Combining Advanced Materials for Interface Engineering (CAMIE)
结合先进材料进行界面工程 (CAMIE)
基本信息
- 批准号:EP/X027074/1
- 负责人:
- 金额:$ 834.99万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The challenge we have set ourselves is to find fundamentally new ways to store, manipulate and transport information based on our unique approach to materials integration and interface control.Electronic applications and their use are increasing at exponential rates with 6% of the global energy consumed by ICT. As anyone who has used an electronic gadget knows, they rapidly get warm. But the heat is a by-product of the way that they use electric currents which is unsustainably dumped into the environment. Electric currents are used to transfer information, to store it, retrieve it and to perform operations. As devices become smaller, the problem increases because the materials become more resistive to currents and generate more heat. The scale of the problem is huge. As an example, Google reports that significant amounts of energy are used to cool their server farms. In 2021, they used ~12 TWhr of electricity, about the same as a small country, and the trend is increasing. The internet currently has a carbon footprint that is larger than that of the airline industry and is predicted to double from 2020 to 2025. For long-term sustainability we must reduce the consumption of energy in ICT. Spintronics exploits the magnetic property of electrons (spin) for applications. It offers compelling possibilities for new devices that might function at reduced energy. Pure spin currents transfer spin without transferring charge so that information can be exchanged without the heat a charge current generates. Using electric fields in devices can have great advantages over magnetic fields, including using less energy, but usually magnetism cannot be controlled by electric fields. Molecular interfaces can be altered by electric fields and ferroelectrics have a polarisation that can be switched electrically hence tuning the behaviour of a magnet when they are connected. A stumbling block to progress is that these different materials require different techniques of preparation and to be useful in ICT they must be thin - of the order of tens of atoms thick. Such thin layers need to be protected during their fabrication and then the different layers combined. The solution requires bespoke designs and breakthroughs in materials science. The Royce Institute is a key EPSRC investment (£235M) founded to "accelerate the invention and take-up of new material systems that will meet global challenges", driving the UK strategy to increase our ability to compete, not only in science, but in the marketplace. At Leeds we recently installed the Royce Deposition System: a £2.2M suite of chambers each of which is designed to grow a different type of advanced material that requires different deposition methods and environments for processing. The chambers are connected together through ultra-high vacuum tubes so samples can be transferred whilst being protected from the atmosphere and impurities. Crucially, by controlling their interfaces at the atomic level we can grow layers of different materials and bring them together into a single hybrid structure. For example, we can: form 2 dimensional materials with electrical polarisation to control magnets; build molecular thin film interfaces that lead to tuneable emergent magnetic, optoelectronic and superconducting properties; drive magnetic textures using spin currents from topological materials, etc. A complete understanding of these hybrid structures will pave the way to exploitable technology where the initial benefits will enable information processing and storage with less energy, reducing carbon emissions and prolonging battery life. Our approach has the potential to impact many areas of technology such as data storage, sensors, energy storage, and quantum materials.
我们为自己设定的挑战是基于我们独特的材料集成和界面控制方法,找到全新的存储、处理和传输信息的方法。电子应用及其使用正以指数级速度增长,ICT消耗的能源占全球能源的6%。任何使用过电子设备的人都知道,它们很快就会变暖。但是热量是他们使用电流的副产品,这些电流不可持续地排放到环境中。电流被用来传输信息,存储信息,检索信息和执行操作。随着设备变得越来越小,问题越来越严重,因为材料对电流的电阻越来越大,产生的热量也越来越多。问题的规模是巨大的。例如,谷歌报告说,大量的能源被用来冷却他们的服务器农场。2021年,他们使用了约12 TWhr的电力,与一个小国大致相同,而且趋势还在增加。互联网目前的碳足迹比航空业的碳足迹还大,预计从2020年到2025年将翻一番。为了实现长期可持续性,我们必须减少信息和通信技术的能源消耗。自旋电子学利用电子的磁性(自旋)进行应用。它为新设备提供了令人信服的可能性,这些设备可能会以更低的能量运行。纯自旋电流在不转移电荷的情况下转移自旋,因此可以在没有电荷电流产生的热量的情况下交换信息。在设备中使用电场可以比磁场有很大的优势,包括使用更少的能量,但通常磁场不能由电场控制。分子界面可以被电场改变,铁电体具有可以电切换的极化,因此当它们连接时可以调整磁体的行为。进展的一个绊脚石是,这些不同的材料需要不同的制备技术,并且要在ICT中有用,它们必须薄-大约几十个原子厚。这样的薄层需要在其制造期间被保护,然后不同的层被组合。解决方案需要定制设计和材料科学的突破。罗伊斯研究所是EPSRC的一项关键投资(2.35亿英镑),旨在“加速新材料系统的发明和采用,以应对全球挑战”,推动英国的战略,以提高我们的竞争能力,不仅在科学方面,而且在市场上。在利兹,我们最近安装了Royce沉积系统:一套价值220万英镑的腔室,每个腔室都被设计用于生长不同类型的先进材料,这些材料需要不同的沉积方法和处理环境。这些腔室通过超高真空管连接在一起,因此样品可以在不受大气和杂质影响的情况下转移。至关重要的是,通过在原子水平上控制它们的界面,我们可以生长不同材料的层,并将它们组合成一个单一的混合结构。例如,我们可以:形成具有电极化的二维材料来控制磁体;构建分子薄膜界面,从而产生可调的磁、光电子和超导特性;使用来自拓扑材料的自旋电流驱动磁纹理等。对这些混合结构的完全理解将为可开发的技术铺平道路,其中最初的好处将使信息处理和存储具有更少的能量,减少碳排放并延长电池寿命。我们的方法有可能影响许多技术领域,如数据存储,传感器,能量存储和量子材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Hickey其他文献
Bryan Hickey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Hickey', 18)}}的其他基金
Multifunctional Scanning Microscopy
多功能扫描显微镜
- 批准号:
EP/P001556/1 - 财政年份:2016
- 资助金额:
$ 834.99万 - 项目类别:
Research Grant
Spintronics at Leeds: Platform Grant
利兹自旋电子学:平台资助
- 批准号:
EP/G005176/1 - 财政年份:2008
- 资助金额:
$ 834.99万 - 项目类别:
Research Grant
相似国自然基金
面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
- 批准号:61201232
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
LTE-Advanced中继网络关键技术研究
- 批准号:61171096
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
IMT-Advanced协作中继网络中的网络编码研究
- 批准号:61040005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
- 批准号:61001116
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
- 批准号:61001071
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
Collaborative R&D
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
Research Grant
CAREER: Enabling High-throughput Creep Testing of Advanced Materials through in-situ Micromechanics and Mesoscale Modeling
职业:通过原位微观力学和介观建模实现先进材料的高通量蠕变测试
- 批准号:
2340174 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
Standard Grant
Probing Molecular Quantum Materials by Advanced Spectroscopies
通过先进光谱探测分子量子材料
- 批准号:
2349345 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
Continuing Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036867/1 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
Research Grant
Enviro: a novel colouring solution to unlock sustainable lightweight advanced composite materials
Enviro:一种新颖的着色解决方案,可释放可持续的轻质先进复合材料
- 批准号:
10093708 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
Collaborative R&D
SUNRISE: Safe and sUstainable by desigN: IntegRated approaches for Impact aSsessment of advanced matErials
SUNRISE:安全且可持续的设计:先进材料影响评估的综合方法
- 批准号:
10103630 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
EU-Funded
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
Research Grant
Life prediction and optimisation of advanced first-wall fusion materials
先进首壁聚变材料的寿命预测和优化
- 批准号:
IM230100125 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
Mid-Career Industry Fellowships
PFI-TT: Scale up of new materials that generate terahertz-frequency light for advanced scanning applications
PFI-TT:扩大产生太赫兹频率光的新材料的规模,用于高级扫描应用
- 批准号:
2345726 - 财政年份:2024
- 资助金额:
$ 834.99万 - 项目类别:
Standard Grant