Enriched Categorical Logic
丰富的分类逻辑
基本信息
- 批准号:EP/X027139/1
- 负责人:
- 金额:$ 38.92万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Categorical logic concerns the link between two foundational areas of Pure Mathematics: logic and category theory. Logic is concerned with the study of language and reasoning in mathematics, with a focus on the interplay between axiomatic theories and the mathematical structures that these axioms are intended to describe. category theory, an abstract form of algebra, provides a language for describing a variety of mathematical constructions in a uniform way, and for relating different areas of mathematics in a efficient way. The relation between these two areas has given rise to the area of categorical logic, which is concerned with the study of logic using methods of category theory. Early in the development of category theory, it was realised that ordinary categories, in which one has objects and sets of morphisms between any two objects, are not sufficient to describe some important structures in mathematics, particularly in algebra and topology, and that it was necessary to develop what is now known as enriched category theory. As the name suggests, this is a more powerful version of ordinary category theory, which has important applications in many different contexts: in algebra with additive, abelian and differentially-graded categories; in topology with simplicial and topological categories; and in theoretical Computer Science with order-enriched categories. In an enriched category, one has objects, but for any two objects, morphisms between them do not form just a set but may possess additional structures or properties. For example, in the category of modules over a commutative ring R, morphisms can be added and naturally form an abelian group; while in the category of smooth manifolds and smooth functions between them, morphisms can be seen as the points of a topological space. One way to make this precise is to say that the morphisms between two objects are an object of a given category B, called the base of the enrichment. The large variety of examples, in algebra, topology, and analysis, suggests how powerful the theory of enriched categories is.The connection between logic and ordinary category theory has long been established. Given a theory, in the sense of logic, one can consider the category of its models and vice versa, given a good enough category one can find a theory whose category of models coincides with the category we started with. Moreover, for some classes of theories one can determine the class of categories that arise as models of them in purely categorical terms. For instance, categories of models of equational theories are known as finitary varieties, categories of models of essentially algebraic theories form the locally finitely presentable categories, and regular theories correspond to the definable categories; each providing a way to go back and forth between theories and their models. These sort of dualities are helpful because they provide different points of view (logical or categorical) to attack problems. When moving to enriched category theory this connection does not exist for a very simple reason: we do not have yet an "enriched" version of categorical logic. This is the main gap that we seek to fill with this project. This project has several concrete and precise milestones, provided by enriched counterparts of fundamental theorems of Categorical logic. This includes the introduction of enriched languages, theories, and models, as well as the construction of enriched fragments of logic and their categorical interpretations. Furthermore, a significant part of it will be devoted to applications. We envisage at least four areas of applications: - 2-categorical, with the development of 2-dimensional logic and 2-dimensional varieties;- abelian, with the study of additive model theory and definable additive categories;- simplicial, with a syntactic characterisation of Riehl and Verity's infinity-cosmoi;- metric, with connections to continuous and metric model theory.
范畴逻辑关注纯数学的两个基本领域之间的联系:逻辑和范畴理论。逻辑学研究数学中的语言和推理,重点关注公理理论和这些公理所要描述的数学结构之间的相互作用。范畴理论是代数的一种抽象形式,它提供了一种语言,用于以统一的方式描述各种数学结构,并以一种有效的方式将不同的数学领域联系起来。这两个领域之间的关系催生了范畴逻辑领域,它涉及到运用范式论的方法来研究逻辑。在范畴理论发展的早期,人们意识到普通范畴--其中一个人有对象和任何两个对象之间的态射集--不足以描述数学中的一些重要结构,特别是在代数和拓扑学中,必须发展现在所知的丰富的范畴理论。顾名思义,这是普通范畴理论的一个更强大的版本,它在许多不同的上下文中都有重要的应用:在具有加法、交换和微分分次范畴的代数中;在具有单纯和拓扑范畴的拓扑学中;以及在具有富序范畴的理论计算机科学中。在一个丰富的范畴中,一个人是有对象的,但对于任何两个对象,它们之间的态射不只是一个集合,而可能具有额外的结构或性质。例如,在交换环R上的模范畴中,态射可以相加,自然形成一个阿贝尔群;而在光滑流形和它们之间的光滑函数范畴中,态射可以看作是拓扑空间的点。一种精确的方法是说,两个对象之间的态射是一个给定类别B的对象,称为丰富的基础。在代数、拓扑学和分析中的大量例子表明丰富范畴理论是多么强大。逻辑和普通范畴理论之间的联系早已建立。给出一个理论,在逻辑意义上,一个人可以考虑它的模型范畴,反之亦然,给出一个足够好的范畴,你可以找到一个理论,它的模型范畴与我们开始的范畴重合。此外,对于某些类别的理论,人们可以用纯粹的范畴术语来确定作为它们的模型而出现的类别。例如,方程理论的模型范畴被称为有限簇,本质代数理论的模型范畴形成局部有限可表示范畴,而正则理论对应于可定义范畴;每一种范畴都提供了在理论及其模型之间来回移动的途径。这种二元性是有帮助的,因为它们提供了不同的观点(逻辑的或绝对的)来攻击问题。当转向丰富的范畴理论时,这种联系并不存在,原因很简单:我们还没有“丰富的”版本的范畴逻辑。这是我们试图通过这个项目填补的主要空白。这个项目有几个具体和精确的里程碑,由丰富的范畴逻辑基本定理提供。这包括介绍丰富的语言、理论和模型,以及构建丰富的逻辑片段及其范畴解释。此外,它的很大一部分将用于应用程序。我们设想至少有四个应用领域:-2-范畴,随着二维逻辑和二维变体的发展;-阿贝尔,研究可加模型理论和可定义的可加范畴;-单纯,具有Riehl和Verity的无限宇宙的句法特征;-度量,与连续和度量模型理论相联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
相似海外基金
Descriptive Set Theory and Categorical Logic
描述集合论和分类逻辑
- 批准号:
2224709 - 财政年份:2021
- 资助金额:
$ 38.92万 - 项目类别:
Standard Grant
Descriptive Set Theory and Categorical Logic
描述集合论和分类逻辑
- 批准号:
2054508 - 财政年份:2021
- 资助金额:
$ 38.92万 - 项目类别:
Standard Grant
Relating set theories and type theories via categorical logic
通过分类逻辑将集合论和类型论联系起来
- 批准号:
2438979 - 财政年份:2020
- 资助金额:
$ 38.92万 - 项目类别:
Studentship
Categorical logic as a foundation of mathematics
分类逻辑作为数学的基础
- 批准号:
347834-2008 - 财政年份:2008
- 资助金额:
$ 38.92万 - 项目类别:
Postgraduate Scholarships - Master's
Categorical logic as a foundation of mathematics
分类逻辑作为数学的基础
- 批准号:
347834-2007 - 财政年份:2007
- 资助金额:
$ 38.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Categorical logic and algebra
分类逻辑和代数
- 批准号:
4848-2002 - 财政年份:2005
- 资助金额:
$ 38.92万 - 项目类别:
Discovery Grants Program - Individual
Categorical logic and algebra
分类逻辑和代数
- 批准号:
4848-2002 - 财政年份:2004
- 资助金额:
$ 38.92万 - 项目类别:
Discovery Grants Program - Individual
Categorical logic and algebra
分类逻辑和代数
- 批准号:
4848-2002 - 财政年份:2003
- 资助金额:
$ 38.92万 - 项目类别:
Discovery Grants Program - Individual
Categorical logic and algebra
分类逻辑和代数
- 批准号:
4848-2002 - 财政年份:2002
- 资助金额:
$ 38.92万 - 项目类别:
Discovery Grants Program - Individual
Categorical logic and algebra; mathematical linguistics
分类逻辑和代数;
- 批准号:
4848-1998 - 财政年份:2001
- 资助金额:
$ 38.92万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




