Creating digital twins of flows from noisy and sparse flow-MRI data
从嘈杂和稀疏的流 MRI 数据创建流的数字孪生
基本信息
- 批准号:EP/X028232/1
- 负责人:
- 金额:$ 47.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
4D flow Magnetic Resonance Imaging (flow-MRI) is a non-invasive flow imaging technique widely used in medicine and engineering to measure velocity fields in three spatial and one time dimension (4D). For example, it is used to measure the velocity of blood in the heart and surrounding vessels to identify anomalies such as aneurysms and stenoses. The velocity measurements become increasingly noisy, however, as the spatial resolution is increased. To achieve acceptable signal-to-noise ratio (SNR), scans are often repeated and averaged, leading to long acquisition times. This proposal is to extend the capabilities of flow-MRI using Bayesian physics-constrained algorithms that automatically generate the most likely digital twin of a flow from noisy and sparse 4D flow-MRI data. These methods increase the accuracy and the spatiotemporal resolution of flow-MRI by 10 to 100 times, provide quantitative estimates of derived flow quantities that are difficult to measure, and enable the imaging of flows whose short length and/or time scales cannot be captured using state-of-the-art flow-MRI techniques. In porous media flows, for example, these methods will provide velocity fields, stress tensors, and derived quantities far beyond the accuracy of current state-of-the-art flow-MRI, leading to better understanding and new discoveries. In medical imaging, these methods will also enable patient-specific modelling and, if successful, will lead to increased adoption of 4D flow-MRI by clinicians. This would reduce patient scan times, replace invasive techniques such as cardiac catheterization, and permit the imaging of smaller vessels such as those found in neonatal and fetal cardiology. In my PhD I developed these methods and showed that, to obtain a given accuracy in axisymmetric and 2D planar flows, they reduce the required flow-MRI data by 10 to 100 times. The aim of this fellowship is to extend the methods I developed during my PhD from 2D and 3D steady flows in rigid geometries to 4D flows in flexible geometries, to scope out challenges posed by in-vivo cardiovascular haemodynamics, and to disseminate these methods widely. In this proposal I will focus on flow-MRI, but note that these methods could be extended to other velocimetry methods such as PIV.
4D血流磁共振成像(Flow-MRI)是一种广泛应用于医学和工程领域的无创性血流成像技术,用于测量三维空间和一维时间内的速度场。例如,它被用来测量心脏和周围血管的血流速度,以识别动脉瘤和狭窄等异常情况。然而,随着空间分辨率的提高,速度测量变得越来越噪声。为了达到可接受的信噪比(SNR),扫描经常被重复和平均,从而导致较长的采集时间。该建议使用贝叶斯物理约束算法来扩展Flow-MRI的能力,该算法从噪声和稀疏的4D Flow-MRI数据中自动生成流的最有可能的数字孪生兄弟。这些方法将Flow-MRI的准确性和时空分辨率提高了10到100倍,提供了难以测量的导出流量的定量估计,并使其能够成像其短长度和/或时间尺度无法使用最先进的Flow-MRI技术捕获的流动。例如,在多孔介质流动中,这些方法将提供远远超过当前最先进的流动磁共振成像精度的速度场、应力张量和导出量,从而带来更好的理解和新的发现。在医学成像方面,这些方法还将使患者特定的建模成为可能,如果成功,将导致临床医生更多地采用4D Flow-MRI。这将减少患者的扫描时间,取代心导管等侵入性技术,并允许对较小的血管进行成像,如在新生儿和胎儿心脏病学中发现的血管。在我的博士学位中,我开发了这些方法,并表明,为了在轴对称和2D平面流动中获得给定的精度,它们将所需的Flow-MRI数据减少了10到100倍。该奖学金的目的是将我在博士期间开发的方法从刚性几何中的2D和3D稳定流动扩展到柔性几何中的4D流动,探索体内心血管血流动力学带来的挑战,并广泛传播这些方法。在本提案中,我将重点介绍Flow-MRI,但请注意,这些方法可以扩展到其他速度测量方法,如PIV。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandros Kontogiannis其他文献
Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators
使用形状记忆合金执行器的自适应翼型的鲁棒流固耦合分析
- DOI:
10.1088/1361-665x/aad649 - 发表时间:
2018 - 期刊:
- 影响因子:4.1
- 作者:
Theodoros T Machairas;Alexandros Kontogiannis;Anargyros Karakalas;A. Solomou;V. Riziotis;D. Saravanos - 通讯作者:
D. Saravanos
Shape Sensitivity Analysis and Optimization in Fluid Dynamics
流体动力学中的形状敏感性分析和优化
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Alexandros Kontogiannis - 通讯作者:
Alexandros Kontogiannis
Bayesian inverse Navier-Stokes problems: joint flow field reconstruction and parameter learning
贝叶斯逆纳维-斯托克斯问题:联合流场重建和参数学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alexandros Kontogiannis;Scott V. Elgersma;A. Sederman;M. Juniper - 通讯作者:
M. Juniper
Alexandros Kontogiannis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
超灵敏高分辨的Digital-CRISPR技术用于免扩增的多重核酸检测
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Digital Twin的数控机床智能运行维护方法研究
- 批准号:51875323
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于数字PCR(digital-PCR)技术的耳聋无创产前检测研究
- 批准号:LQ19H040016
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Digital LAMP技术的循环肿瘤细胞检测和分型新方法研究
- 批准号:81702102
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于表面工程的外泌体digital PCR定量分析体系的构建及转化医学研究
- 批准号:81702959
- 批准年份:2017
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
数字版权管理中数字权利传播的小世界网络建模及风险控制
- 批准号:61003234
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
微复型过程中聚合物流动填充机理的可视化实验分析
- 批准号:50975227
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
基于生命节律的数字化口服给药系统及方法的研究
- 批准号:30700160
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
COMET: Communications Enabled, AI/ML based Digital Twins for Smart city Logistics and Last Mile applications
COMET:支持通信、基于 AI/ML 的数字孪生,用于智慧城市物流和最后一英里应用
- 批准号:
10099265 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Collaborative R&D
Empowering Next-Generation Spatial Digital Twins with Linked Spatial Data
利用链接的空间数据赋能下一代空间数字孪生
- 批准号:
DP240101006 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Discovery Projects
Trustworthy and Ethical Assurance of Digital Twins (TEA-DT)
数字孪生的可信和道德保证 (TEA-DT)
- 批准号:
AH/Z505663/1 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Research Grant
WaMA-WaDiT: Water Management and Adaption based on Watershed Digital Twins
WaMA-WaDiT:基于流域数字孪生的水管理和适应
- 批准号:
EP/Y036999/1 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Research Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312139 - 财政年份:2023
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
CAREER: Digital Twins of Surgical Environments for Situational Awareness and Immersive Simulation
职业:用于态势感知和沉浸式模拟的手术环境数字孪生
- 批准号:
2239077 - 财政年份:2023
- 资助金额:
$ 47.04万 - 项目类别:
Continuing Grant
Workshop on Atmospheric and Urban Digital Twins (AUDT); Austin, Texas
大气和城市数字孪生研讨会(AUDT);
- 批准号:
2324744 - 财政年份:2023
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant