Plasmon-Enhanced FerroElectric Discovery

等离激元增强铁电的发现

基本信息

  • 批准号:
    EP/X034593/1
  • 负责人:
  • 金额:
    $ 211.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

We live in an information driven society, where we see proliferation of data centric technologies, e.g. self- driving vehicles, data centres, IoT and AI. Data complexity is explosively growing and data centers consume an increasing fraction of total world energy use. With the current von Neumann architectures up to ~80% of the computing energy is consumed in the data-transfer bottleneck between logic and memory on interconnects. To progress beyond this limit new types of device are needed. Neuromorphic systems, mimicking the brain nervous system, shine for proficiency in cognitive and data-intensive tasks, providing high computing efficiencies and low power consumption. Ferroelectric memories could offer the required technology for both non-volatile memory and neuromorphic computing.PlasmoFED links low-energy nanoscale device engineering and plasmon-enhanced light-matter interactions by implementing optically accessible memory devices to investigate ferroelectric switching materials in ambient conditions, in real-time and in-situ during device operation. We devise a non-destructive technique able to avoid electron-induced perturbation of the switching process present in traditional electron microscopy techniques. The industry-standard material HfO2 will be explored but with entirely new multifunctionality of ferroelectricity and ionic conductivity. PlasmoFED will focus on nanoscopic in-operando access to this hybrid switching process, tackling the current problems of stability in RRAMs. PlasmoFED will also address the current problems of scalability and reliability in FeRAMs aiming to understand the role of oxygen vacancies, defects and domain wall propagation in HfO2. The concept of light triggered ferroelectric switching will also be developed. PlasmoFED will provide critical knowledge for materials and device engineers to guide the creation of devices of unparalleled performance. The potential big win is new devices based on HfO2 for memory and AI applications.
我们生活在一个信息驱动的社会,我们看到以数据为中心的技术激增,例如自动驾驶汽车,数据中心,物联网和人工智能。数据复杂性呈爆炸性增长,数据中心消耗的能源占全球能源总消耗的比例越来越大。在当前的冯·诺依曼架构中,高达80%的计算能量消耗在互连上的逻辑和存储器之间的数据传输瓶颈中。为了超越这一限制,需要新类型的设备。神经形态系统模仿大脑神经系统,在认知和数据密集型任务中表现出色,提供高计算效率和低功耗。铁电存储器可以为非易失性存储器和神经形态计算提供所需的技术。等离子体FED通过实现光学可访问存储器设备来连接低能纳米级设备工程和等离子体增强的光-物质相互作用,以在设备操作期间实时和原位地在环境条件下研究铁电开关材料。我们设计了一种非破坏性的技术,能够避免在传统的电子显微镜技术的开关过程中存在的电子诱导扰动。工业标准材料HfO 2将被探索,但具有铁电性和离子导电性的全新多功能性。PlasmoFED将专注于纳米级的混合开关过程,解决RRAM目前的稳定性问题。PlasmoFED还将解决FeRAM中当前的可扩展性和可靠性问题,旨在了解HfO 2中氧空位,缺陷和畴壁传播的作用。光触发铁电开关的概念也将得到发展。PlasmoFED将为材料和设备工程师提供关键知识,以指导创建性能无与伦比的设备。潜在的大赢家是基于HfO 2的存储器和人工智能应用的新设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giuliana Di Martino其他文献

Na<sup>+</sup>-doped WO<sub>3</sub> double-layer resistive switching device for biomimetic applications
  • DOI:
    10.1016/j.apmt.2024.102515
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Barbara Salonikidou;Benedetta Gaggio;Atif Jan;Megan O. Hill;Giulio I. Lampronti;Simon Fairclough;Giuliana Di Martino;Markus Hellenbrand;Judith L. MacManus-Driscoll
  • 通讯作者:
    Judith L. MacManus-Driscoll
Endoscopic ultrasonic aspiration of brain abscess
  • DOI:
    10.1007/s00381-018-3861-3
  • 发表时间:
    2018-06-09
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Pietro Spennato;Ferdinando Aliberti;Francesco Colaleo;Giuseppe Mirone;Giuliana Di Martino;Giuseppe Cinalli
  • 通讯作者:
    Giuseppe Cinalli
Spinal epidural abscess in children: a case-based review
  • DOI:
    10.1007/s00381-020-04609-3
  • 发表时间:
    2020-04-14
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Pietro Spennato;Daniela Renedo;Daniele Cascone;Giuseppe Mirone;Alessia Imperato;Giuliana Di Martino;Giuseppe Cinalli
  • 通讯作者:
    Giuseppe Cinalli
Intraventricular Bone Wax as Cause of Recurrent Cerebrospinal Fluid Infection: A Neuroradiologic Pitfall
  • DOI:
    10.1016/j.wneu.2015.11.030
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pietro Spennato;Inti Enrique Escamilla-Rodrìguez;Giuliana Di Martino;Alessia Imperato;Giuseppe Mirone;Giuseppe Cinalli
  • 通讯作者:
    Giuseppe Cinalli
Contemporary occurrence of hydrocephalus and Chiari I malformation in sagittal craniosynostosis. Case report and review of the literature
  • DOI:
    10.1007/s00381-016-3189-9
  • 发表时间:
    2016-07-22
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Francesco Giovanni Sgulò;Pietro Spennato;Ferdinando Aliberti;Giuliana Di Martino;Daniele Cascone;Giuseppe Cinalli
  • 通讯作者:
    Giuseppe Cinalli

Giuliana Di Martino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Standard Grant
Enhanced Drug Repositioningを用いた肝硬変合併症に対する同時制御治療法の開発
使用增强药物重新定位开发肝硬化并发症同步控制疗法
  • 批准号:
    24K11137
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Standard Grant
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
  • 批准号:
    2335104
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Standard Grant
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
  • 批准号:
    LP220200906
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Linkage Projects
Revolutionary Soft Surfboards - Advanced UK low carbon manufacturing for enhanced durability and 100% recyclability
革命性%20Soft%20冲浪板%20-%20Advanced%20UK%20low%20carbon%20制造%20for%20增强%20耐用性%20和%20100%%20可回收性
  • 批准号:
    10095272
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Collaborative R&D
ENTICE: Enhanced Ammonia Cracking to Improve Engine Combustion and Emissions
ENTICE:增强氨裂解以改善发动机燃烧和排放
  • 批准号:
    10096979
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Collaborative R&D
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    EU-Funded
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
  • 批准号:
    10109956
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了