Plasmon-Enhanced FerroElectric Discovery

等离激元增强铁电的发现

基本信息

  • 批准号:
    EP/X034593/1
  • 负责人:
  • 金额:
    $ 211.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

We live in an information driven society, where we see proliferation of data centric technologies, e.g. self- driving vehicles, data centres, IoT and AI. Data complexity is explosively growing and data centers consume an increasing fraction of total world energy use. With the current von Neumann architectures up to ~80% of the computing energy is consumed in the data-transfer bottleneck between logic and memory on interconnects. To progress beyond this limit new types of device are needed. Neuromorphic systems, mimicking the brain nervous system, shine for proficiency in cognitive and data-intensive tasks, providing high computing efficiencies and low power consumption. Ferroelectric memories could offer the required technology for both non-volatile memory and neuromorphic computing.PlasmoFED links low-energy nanoscale device engineering and plasmon-enhanced light-matter interactions by implementing optically accessible memory devices to investigate ferroelectric switching materials in ambient conditions, in real-time and in-situ during device operation. We devise a non-destructive technique able to avoid electron-induced perturbation of the switching process present in traditional electron microscopy techniques. The industry-standard material HfO2 will be explored but with entirely new multifunctionality of ferroelectricity and ionic conductivity. PlasmoFED will focus on nanoscopic in-operando access to this hybrid switching process, tackling the current problems of stability in RRAMs. PlasmoFED will also address the current problems of scalability and reliability in FeRAMs aiming to understand the role of oxygen vacancies, defects and domain wall propagation in HfO2. The concept of light triggered ferroelectric switching will also be developed. PlasmoFED will provide critical knowledge for materials and device engineers to guide the creation of devices of unparalleled performance. The potential big win is new devices based on HfO2 for memory and AI applications.
我们生活在一个信息驱动的社会,我们看到以数据为中心的技术激增,例如自动驾驶汽车、数据中心、物联网和人工智能。数据复杂性呈爆炸性增长,数据中心消耗的能源占全球总能源使用量的比例越来越大。在当前的冯·诺伊曼体系结构中,高达80%的计算能量被消耗在互连上的逻辑和存储器之间的数据传输瓶颈上。为了突破这一限制,需要新类型的设备。神经形态系统模仿大脑神经系统,在认知和数据密集型任务中表现出色,提供高计算效率和低功耗。铁电存储器可以为非易失性存储器和神经形态计算提供所需的技术。等离子体FED通过实现光学可访问的存储器件来研究环境条件下的铁电开关材料,在器件运行期间实时和原位地将低能纳米器件工程和等离子体增强的光-物质相互作用联系起来。我们设计了一种非破坏性技术,能够避免传统电子显微镜技术中存在的开关过程中的电子诱导扰动。工业标准材料HfO2将被探索,但具有铁电和离子导电性的全新多功能。等离子体FED将专注于在手术中获得这种混合开关过程的纳米级,解决目前RRAM中的稳定性问题。等离子体FED还将解决目前铁电随机存取存储器中的可扩展性和可靠性问题,旨在了解氧空位、缺陷和磁畴壁在HfO2中的作用。还将提出光触发铁电开关的概念。等离子体FED将为材料和设备工程师提供关键知识,以指导创造具有无与伦比的性能的设备。潜在的大赢家是基于HfO2的新设备,用于存储和人工智能应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giuliana Di Martino其他文献

Na<sup>+</sup>-doped WO<sub>3</sub> double-layer resistive switching device for biomimetic applications
  • DOI:
    10.1016/j.apmt.2024.102515
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Barbara Salonikidou;Benedetta Gaggio;Atif Jan;Megan O. Hill;Giulio I. Lampronti;Simon Fairclough;Giuliana Di Martino;Markus Hellenbrand;Judith L. MacManus-Driscoll
  • 通讯作者:
    Judith L. MacManus-Driscoll
Endoscopic ultrasonic aspiration of brain abscess
  • DOI:
    10.1007/s00381-018-3861-3
  • 发表时间:
    2018-06-09
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Pietro Spennato;Ferdinando Aliberti;Francesco Colaleo;Giuseppe Mirone;Giuliana Di Martino;Giuseppe Cinalli
  • 通讯作者:
    Giuseppe Cinalli
Spinal epidural abscess in children: a case-based review
  • DOI:
    10.1007/s00381-020-04609-3
  • 发表时间:
    2020-04-14
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Pietro Spennato;Daniela Renedo;Daniele Cascone;Giuseppe Mirone;Alessia Imperato;Giuliana Di Martino;Giuseppe Cinalli
  • 通讯作者:
    Giuseppe Cinalli
Intraventricular Bone Wax as Cause of Recurrent Cerebrospinal Fluid Infection: A Neuroradiologic Pitfall
  • DOI:
    10.1016/j.wneu.2015.11.030
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pietro Spennato;Inti Enrique Escamilla-Rodrìguez;Giuliana Di Martino;Alessia Imperato;Giuseppe Mirone;Giuseppe Cinalli
  • 通讯作者:
    Giuseppe Cinalli
Contemporary occurrence of hydrocephalus and Chiari I malformation in sagittal craniosynostosis. Case report and review of the literature
  • DOI:
    10.1007/s00381-016-3189-9
  • 发表时间:
    2016-07-22
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Francesco Giovanni Sgulò;Pietro Spennato;Ferdinando Aliberti;Giuliana Di Martino;Daniele Cascone;Giuseppe Cinalli
  • 通讯作者:
    Giuseppe Cinalli

Giuliana Di Martino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Standard Grant
Enhanced Drug Repositioningを用いた肝硬変合併症に対する同時制御治療法の開発
使用增强药物重新定位开发肝硬化并发症同步控制疗法
  • 批准号:
    24K11137
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Standard Grant
Vector light enhanced atomic magnetometry
矢量光增强原子磁力测量
  • 批准号:
    EP/Z000513/1
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Research Grant
Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
  • 批准号:
    EP/Z000548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Research Grant
PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
  • 批准号:
    EP/Y001877/1
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Research Grant
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Standard Grant
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
  • 批准号:
    2335104
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Standard Grant
22BBSRC-NSF/BIO: A synthetic pyrenoid to guide the engineering of enhanced crops
22BBSRC-NSF/BIO:指导改良作物工程的合成核糖体
  • 批准号:
    BB/Y000323/1
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Research Grant
Revolutionary Soft Surfboards - Advanced UK low carbon manufacturing for enhanced durability and 100% recyclability
革命性%20Soft%20冲浪板%20-%20Advanced%20UK%20low%20carbon%20制造%20for%20增强%20耐用性%20和%20100%%20可回收性
  • 批准号:
    10095272
  • 财政年份:
    2024
  • 资助金额:
    $ 211.03万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了