TRAnsparent InterpretabLe robots - TRAIL

透明可解释机器人 - TRAIL

基本信息

  • 批准号:
    EP/X035441/1
  • 负责人:
  • 金额:
    $ 67.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

TRAIL strategically focuses on a novel, highly interdisciplinary and cross-sectorial research and training programme for a better understanding of transparency in deep learning, artificial intelligence and robotics systems. In order to train a new generation of Early Stage Researchers (ESR) to become experts in the design and implementation of transparent, interpretable neural systems and robots, we have built a highly interdisciplinary consortium, containing expert partners with long-standing expertise in cutting-edge artificial intelligence and robotics, including deep neural networks, computer science, mathematics, social robotics, human-robot interaction and psychology. In order to build transparent robotic systems, these new ESR researchers need to learn about the theory and practice of the principles of (1) internal decision understanding and (2) external transparent behaviour. Since the ability to interpret complex robotic systems needs highly interdisciplinary knowledge, we will start, on the decision level, to interpret deep neural learning and analyse what knowledge can be efficiently extracted. At the same time, on the behaviour level, the disciplines of human-robot interaction and psychology will be key in order to understand how to present the extracted knowledge as behaviour in an intuitive and natural way to a human user to integrate the robot into a cooperative human-robot interaction. A scaffolded training curriculum will guarantee that the ESRs have not only a deep understanding of both research areas, but experience optimal skill training to be fully prepared for a successful research career in academia and industry. The importance and need of this research for the industry is clearly visible with the full commitment of 7 leading European and world-wide-operating robotics companies that together cover the majority of Europe's robot market and a broad spectrum of AI applications.
TRAIL的战略重点是一个新颖的、高度跨学科和跨部门的研究和培训方案,以更好地了解深度学习、人工智能和机器人系统的透明度。为了培养新一代早期研究人员(ESR)成为设计和实施透明、可解释的神经系统和机器人的专家,我们建立了一个高度跨学科的联盟,其中包括在尖端人工智能和机器人领域拥有长期专业知识的专家合作伙伴,包括深度神经网络、计算机科学、数学、社会机器人、人机交互和心理学。为了建立透明的机器人系统,这些新的ESR研究人员需要学习(1)内部决策理解和(2)外部透明行为原则的理论和实践。由于解释复杂机器人系统的能力需要高度跨学科的知识,我们将从决策层面开始解释深度神经学习,并分析哪些知识可以有效提取。同时,在行为层面上,人-机器人交互和心理学的学科将是关键,以便理解如何以直观和自然的方式将提取的知识作为行为呈现给人类用户,从而将机器人集成到人-机器人的协作交互中。支架式培训课程将确保ESRS不仅对这两个研究领域都有深刻的了解,而且会体验到最佳的技能培训,为在学术界和工业界成功的研究生涯做好充分准备。这项研究对该行业的重要性和必要性显而易见,因为有7家领先的欧洲和全球运营的机器人公司的全力投入,这些公司共同覆盖了欧洲大部分机器人市场和广泛的人工智能应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Angelo Cangelosi其他文献

What must come down goes up - the effect of noise on weights in spike-timing-dependent plasticity
  • DOI:
    10.1186/1471-2202-16-s1-p283
  • 发表时间:
    2015-12-04
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Michael Klein;Angelo Cangelosi;Thomas Wennekers
  • 通讯作者:
    Thomas Wennekers
A robot that counts like a child: a developmental model of counting and pointing
像孩子一样数数的机器人:数数和指点的发育模型
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leszek Pecyna;Angelo Cangelosi;Alessandro G Di Nuovo
  • 通讯作者:
    Alessandro G Di Nuovo
Consciousness in Humanoid Robots
人形机器人的意识
  • DOI:
    10.3389/978-2-88945-866-0
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonio Chella;Angelo Cangelosi;Giorgio Metta;S. Bringsjord
  • 通讯作者:
    S. Bringsjord
Il contributo metodologico della Developmental Robotics alla psicologia
Il contributo methodologico della Developmental Robotics alla psicologia
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.2
  • 作者:
    Daniela Conti;S. D. Nuovo;Angelo Cangelosi
  • 通讯作者:
    Angelo Cangelosi
State-of-the-Art Elderly Service Robot: Environmental Perception, Compliance Control, Intention Recognition, and Research Challenges
最先进的养老服务机器人:环境感知、合规控制、意图识别和研究挑战
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Xiaofeng Liu;Congyu Huang;Haoran Zhu;Ziyang Wang;Jie Li;Angelo Cangelosi
  • 通讯作者:
    Angelo Cangelosi

Angelo Cangelosi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Angelo Cangelosi', 18)}}的其他基金

eTALK embodied Thought for Abstract Language Knowledge
eTALK体现了抽象语言知识的思想
  • 批准号:
    EP/Y029534/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Research Grant
BABEL
巴贝尔
  • 批准号:
    EP/J004561/1
  • 财政年份:
    2012
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Research Grant
VALUE: Vision, Action, and Language Unified by Embodiment
价值:通过具体化统一愿景、行动和语言
  • 批准号:
    EP/F026471/1
  • 财政年份:
    2008
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Research Grant

相似海外基金

Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
  • 批准号:
    24K18602
  • 财政年份:
    2024
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Learning Generalizable and Interpretable Embodied AI with Human Priors
职业:利用人类先验学习可概括和可解释的具体人工智能
  • 批准号:
    2339769
  • 财政年份:
    2024
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safe and Interpretable Autonomy in Healthcare
职业:迈向医疗保健领域安全且可解释的自主权
  • 批准号:
    2340139
  • 财政年份:
    2024
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Standard Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Research Grant
AIPPN: Interpretable AI enabled Molecular Identification Pipeline for Plant-parasitic Nematodes
AIPPN:可解释的人工智能支持植物寄生线虫分子识别管道
  • 批准号:
    10077647
  • 财政年份:
    2023
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Collaborative R&D
Interpretable Machine Learning Modelling of Future Extreme Floods under Climate Change
气候变化下未来极端洪水的可解释机器学习模型
  • 批准号:
    2889015
  • 财政年份:
    2023
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Studentship
Interpretable data-driven building energy analytics
可解释的数据驱动的建筑能源分析
  • 批准号:
    2891094
  • 财政年份:
    2023
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Studentship
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 67.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了