Capture gamma-ray Assessment in Nuclear Energy (C-GANE)

核能中捕获伽马射线评估 (C-GANE)

基本信息

  • 批准号:
    EP/X038327/1
  • 负责人:
  • 金额:
    $ 214.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Nuclear energy is made available via two principles: 1) fission, in which energy is released by inducing heavy atoms to split into lighter elements, and 2) fusion, where energy is released by fusing light atoms together forming heavier ones. Fission is mature and is used throughout much of the world; fusion is the subject of significant research and investment, due to its potential to yield low-carbon, uninterrupted energy production without the yield of high-active radioactive waste produced in fission.When the fuel used in fission reactors reaches the end of its useful life it is deemed spent, and is either stored or dissolved and separated (the latter known as being reprocessed). The widespread expectation is that spent fuel from fission reactors that is not reprocessed will be disposed of in the form of intact fuel assemblies. However, thus far in the UK much of it has been stored under water to ensure that it is cooled satisfactorily and that the radiation from it is shielded, and this has resulted in some of the assemblies having water inside them. Similarly, where fuel material exists in disordered form associated with, for example, miscellaneous wastes from processing operations and accidents (known as fuel containing materials - FCM), often it has been stored in silos and again the abundance of water present needs to be assessed. It is important to understand the extent of the situation concerning water abundance in spent fuel and FCM prior to it being disposed of permanently (for example in an underground repository) because the water constitutes a significant influence on the stability of the fuel against an inadvertent nuclear reaction, and this could influence how it is stored and the safety case concerning the design of the repository it is stored in.A relevant recent example, and perhaps the highest-profile illustration of late, concerns the FCM at Chernobyl. This received widespread media coverage in 2021 when it was observed that the level of neutron radiation emitted by it was increasing. The debris in question had been shrouded by a new cover erected over the site to protect it from the elements and the suspicion arose that this was causing the fission rate in the material to escalate. Neutrons arise in materials containing fuel predominantly from fission in uranium-235, with the concern being that a fall in the water content in the debris was causing this to increase with the ultimate potential for uncontrolled energy release. However, the emission might also increase due to reduced shielding and absorption of neutrons by a reducing quantity of water, enabling more neutrons to get out, or by an increase in neutron-emitting reactions by alpha particles or due to the neutron detectors being used responding more efficiently at higher energies, none of which have implications as serious as an escalation in induced fission on uranium-235.Rather than measuring the neutron flux, as was the source of concern for the FCM at Chernobyl, greater insight might be gained concerning this complex problem by detecting the gamma rays that are emitted when neutrons are captured by isotopes in the surrounding materials. This has the advantage that the gamma rays have energies that are characteristic of the isotope producing them and that they are measured relatively easily: this is the focus of this proposal. For example, hydrogen emits gamma rays with an easily-identifiable energy of 2.223 MeV which could be characteristic of changes in water content and which might be separable from changes in the neutron environment. Interestingly, one of the few ways to measure fusion power aside from the neutron emission is also to study these emissions, by for example considering the 16.7 MeV emission from the deuterium-tritium reaction. In this project, we intend to bring together these opportunities to determine whether fission and fusion energy might benefit from high-energy capture gamma spectroscopy.
核能是通过两个原理获得的:1)裂变,通过诱导重原子分裂成较轻的元素来释放能量; 2)聚变,通过将轻原子融合在一起形成较重的原子来释放能量。裂变技术已经成熟,并在世界大部分地区得到应用;聚变是重大研究和投资的主题,因为它有可能产生低碳、不间断的能源生产,而不会产生裂变中产生的高活性放射性废物。当裂变反应堆中使用的燃料达到其使用寿命时,它被视为耗尽,并被储存或溶解和分离(后者被称为再处理)。人们普遍期望,来自裂变反应堆的未经后处理的乏燃料将以完整的燃料组件形式进行处置。然而,到目前为止,在英国,大部分都储存在水下,以确保它得到满意的冷却,并屏蔽来自它的辐射,这导致一些组件内部有水。同样,如果燃料材料以无序形式存在,例如,与来自加工操作和事故的杂项废物(称为含燃料材料- FCM)相关,则通常将其储存在筒仓中,并且再次需要评估存在的水的丰度。在永久处置乏燃料和FCM之前,必须了解乏燃料和FCM中水丰度的情况(例如在地下储存库中)因为水对燃料的稳定性构成重大影响以防止意外的核反应,并且这可能影响它如何被存储以及关于它被存储在其中的存储库的设计的安全情况。一个相关的最近的例子,也许是最近最引人注目的例子,涉及切尔诺贝利的FCM。这在2021年得到了媒体的广泛报道,当时观察到它发出的中子辐射水平正在增加。这些碎片被一个新的覆盖物所覆盖,以保护其免受自然元素的影响,人们怀疑这导致了材料中裂变率的上升。在含有燃料的材料中,中子主要来自铀-235的裂变,令人关切的是,碎片中含水量的下降会导致这种情况增加,最终可能导致不受控制的能量释放。然而,发射也可能增加,这是由于减少了水对中子的屏蔽和吸收,使更多的中子能够出去,或者由于α粒子的中子发射反应增加,或者由于使用的中子探测器在更高的能量下更有效地响应,没有一个比铀235的诱发裂变升级更严重的影响。与测量中子通量不同,这是切尔诺贝利FCM关注的问题,通过探测当中子被周围材料中的同位素捕获时所发射的伽马射线,可能会对这个复杂的问题有更深入的了解。这样做的优点是,伽马射线具有产生它们的同位素所特有的能量,并且它们相对容易测量:这是本提案的重点。例如,氢发射具有2.223 MeV的容易识别的能量的伽马射线,这可能是水含量变化的特征,并且可能与中子环境的变化分离。有趣的是,除了中子发射之外,测量聚变功率的少数方法之一也是研究这些发射,例如考虑氘氚反应的16.7 MeV发射。在这个项目中,我们打算把这些机会结合在一起,以确定裂变和聚变能量是否可能受益于高能俘获伽马光谱。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malcolm Joyce其他文献

Malcolm Joyce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malcolm Joyce', 18)}}的其他基金

JUNO: A Network for Japan - UK Nuclear Opportunities
JUNO:日本-英国核机会网络
  • 批准号:
    EP/P013600/2
  • 财政年份:
    2023
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant
Advancing Location Accuracy via Collimated Nuclear Assay for Decommissioning Robotic Applications (ALACANDRA)
通过用于退役机器人应用的准直核分析提高定位精度 (ALACANDRA)
  • 批准号:
    EP/V026941/1
  • 财政年份:
    2021
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant
Autonomous Inspection for Responsive and Sustainable Nuclear Fuel Manufacture (AIRS-NFM)
响应性和可持续核燃料制造的自主检查(AIRS-NFM)
  • 批准号:
    EP/V051059/1
  • 财政年份:
    2021
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant
AMS-UK: A UK Accelerator Mass Spectrometry Facility for Nuclear Fission Research
AMS-UK:英国用于核裂变研究的加速器质谱设施
  • 批准号:
    EP/T01136X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant
JUNO: A Network for Japan - UK Nuclear Opportunities
JUNO:日本-英国核机会网络
  • 批准号:
    EP/P013600/1
  • 财政年份:
    2016
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant
Digital fast neutron assay of uranium
铀的数字快中子测定
  • 批准号:
    EP/P008062/1
  • 财政年份:
    2016
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant
Technology development to evaluate dose rate distribution in PCV and to search for fuel debris submerged in water
开发技术来评估 PCV 中的剂量率分布并寻找淹没在水中的燃料碎片
  • 批准号:
    EP/N017749/1
  • 财政年份:
    2015
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant
Imaging and location of fast neutron emissions by real-time time-of-flight
通过实时飞行时间对快中子发射进行成像和定位
  • 批准号:
    EP/M02489X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant
A centre for Advanced Digital Radiometric Instrumentation for Applied Nuclear Activities (ADRIANA)
应用核活动先进数字辐射仪器中心 (ADRIANA)
  • 批准号:
    EP/L025671/1
  • 财政年份:
    2014
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant
DISTINGUISH: Detection of explosive substances by tomographic inspection using neutron and gamma-ray spectroscopy
区别:使用中子和伽马射线光谱仪通过断层扫描检测爆炸性物质
  • 批准号:
    EP/C008022/1
  • 财政年份:
    2006
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Research Grant

相似国自然基金

gamma-经颅交流电联合iTBS改善阿尔兹海默症患者认知功能的临床随机对照研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
杏仁核-海马环路Gamma振荡的改变在OSA学习记忆中的作用机制探讨
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
基于皮层-纹状体通路gamma振荡特征探讨D3R调控帕金森病异动症的发生机制
  • 批准号:
    82371247
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
40Hz光声刺激Gamma神经振荡夹带技术干预认知障碍的探索性研究
  • 批准号:
    82371906
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
脑小血管病白质病变患者记忆障碍中的前额叶-海马环路gamma振荡同步性作用机制研究
  • 批准号:
    82371199
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PINLYP 在gamma型疱疹病毒潜伏到裂解复制再激活中的作用机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
应变诱导的聚偏氟乙烯gamma-beta晶型转变及压电/铁电性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
排列统计量中的Gamma正性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
成人ADHD自下而上注意加工缺陷的gamma振荡研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of Current Measurement SPECT for the Estimation of Gamma-ray Energy Distribution in Boron Neutron Capture Therapy
用于估计硼中子俘获治疗中伽马射线能量分布的电流测量 SPECT 的开发
  • 批准号:
    16H04632
  • 财政年份:
    2016
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of the gamma-ray emission from thermal neutron capture on Gadolinium, for the multiplicity and the energy distribution
研究钆上热中子俘获的伽马射线发射的多重性和能量分布
  • 批准号:
    26800139
  • 财政年份:
    2014
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of three dimensional dose evaluation system using prompt gamma-ray for boron neutron capture therapy
硼中子俘获治疗用瞬发伽马射线三维剂量评估系统的开发
  • 批准号:
    25282155
  • 财政年份:
    2013
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systematic Study on Fast-Neutron Capture Cross Sections of Stable Isotopes related Long-Lived Fission Products
稳定同位素相关长寿命裂变产物快中子俘获截面的系统研究
  • 批准号:
    15360502
  • 财政年份:
    2003
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Interference between the Resonance Reaction and the Direct Reaction in the keV-Neutron Capture by ^<18>O and Nucleosynthesis
^<18>O keV中子俘获与核合成中共振反应与直接反应的干扰
  • 批准号:
    13440072
  • 财政年份:
    2001
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Capture Cross Section Measurements of Long-lived Fission Products in the Resonance Neutron Energy Region
捕获共振中子能量区域长寿命裂变产物的横截面测量
  • 批准号:
    13680588
  • 财政年份:
    2001
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Fast-Neutron Capture Cross Sections of Long-Lived Nuclear Wastes
长寿命核废料快中子俘获截面研究
  • 批准号:
    12480137
  • 财政年份:
    2000
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
STUDY ON NEUTRON CAPTURE REACTION BY IMPORTANT FISSION PRODUCTS WITH A HIGHLY SENSITIVE DETECTOR
用高灵敏探测器研究重要裂变产物的中子俘获反应
  • 批准号:
    09680475
  • 财政年份:
    1997
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Detectors for On-line Measurement and estimation of absorbed energy using SPECT system in Neutron Capture Therapy
中子俘获治疗中SPECT系统吸收能量在线测量和估算探测器的研究
  • 批准号:
    07558186
  • 财政年份:
    1995
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Radiative Muon Capture, Polorized Gamma Ray Reactions, and Time Reversal Search
辐射μ介子捕获、极化伽马射线反应和时间反转搜索
  • 批准号:
    9407521
  • 财政年份:
    1994
  • 资助金额:
    $ 214.76万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了