Driving Behaviour in Multi-Winner Elections (BMW)

多位获胜者选举中的驾驶行为(宝马)

基本信息

  • 批准号:
    EP/X038351/1
  • 负责人:
  • 金额:
    $ 64.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern societies often need to make choices based on the desires and preferences of multiple stakeholders: such choices range from traffic policies in a local neighbourhood to joining or leaving major political oreconomic alliances. Similar challenges are faced by many organisations, both commercial and non-profit: examples include hiring decisions, identifying strategic priorities, and budget allocation. Likewise, independent artificial agents interacting in a common environment may need to agree on a joint plan of action or allocation of resources. Historically, such scenarios were analysed using the methodology of socialchoice-a discipline that combines tools of mathematics, economics and political science. More recently, it became clear that one also needs to consider algorithmic aspects of the proposed solutions, which leadto the emergence of the field of computational social choice (COMSOC).While much of the early COMSOC research considered the setting where the goal is to elect a single winning alternative based on voters' preferences over the alternatives, more recently the focus has shifted to the multi-winner voting setting, where one aims to select k alternatives (a committee). The applications of this model include electing political leaders, shortlisting applicants for jobs or talent competitions, creating portfolios or identifying items to recommend to a user of online media based on other users' experiences, etc. An even more general setting is that of participatory budgeting (PB)-the task of aggregating the voters' preferences to select a subset of projects to implement from a list of options, where each project has a cost and the total cost should not exceed a given budget. PB was initiated in Brazil in 1989 and was envisioned as a way for local residents to allocate public funds in their neighbourhood. Over the next few decades it quickly spread across the world: e.g., in 2022, the city of Paris will allocate over 75 million euro for urban development by means of PB. PB can capture a variety of applications other than urban planning, such as, e.g., deciding on a set of measures to achieve a particular target (such as reducing carbon emissions or controlling viral transmission), or allocating the programmers' time in an open-source software community.Both multi-winner voting and participatory budgeting have received a lot of attention from the COMSOC community, with researchers identifying general principles for selecting good solutions (axioms) and pro-posing (computationally efficient) voting rules that satisfy these axioms (or proving impossibility/hardness results). However, much of the existing work assumes that the voters have a complete knowledge oftheir preferences and report them truthfully. Both assumptions are not fully realistic: voters may have a hard time making up their minds concerning complex proposals (such as, e.g., evaluating risk and benefitsof different energy sources or implementing educational reforms), and they can misreport their preferences if they can benefit from doing so. The primary focus of our proposal is to develop a systematic understanding of strategic behaviour in multi-winner voting and participatory budgeting, with a focus on the associated algorithmic challenges. Specifically, we shall evaluate the quality of stable outcomes of strategic voting and establish the complexity of computing them, as well as analyse the dynamics of iterative voting. We shall also examine the incentives associated with agents delegating their decisions to more knowledgeable agents. Broadly, we aim to identify tools for collective decision-making that can drive voting behaviour to desirable outcomes and perform well in realistic settings-i.e., in the presence of uncertainty and bounded rationality. We will then work with our project partners to apply these results in practical decision-making scenarios in the contexts of urban living and distributed autonomous organisations.
现代社会往往需要根据多个利益攸关方的愿望和偏好作出选择:这种选择范围从当地社区的交通政策到加入或离开主要的政治经济联盟。许多商业和非营利组织都面临着类似的挑战:例如招聘决策,确定战略优先事项和预算分配。同样,在共同环境中交互的独立人工智能体可能需要就联合行动计划或资源分配达成一致。从历史上看,这种情况是用社会选择的方法来分析的,社会选择是一门结合了数学、经济学和政治学工具的学科。最近,人们开始意识到,人们还需要考虑所提出的解决方案的算法方面,这导致了计算社会选择(COMSOC)领域的出现。虽然早期的COMSOC研究考虑了目标是根据选民对备选方案的偏好选出一个获胜备选方案的设置,但最近的重点已经转移到多赢家投票设置,其中一个人的目标是选择k个备选方案(委员会)。该模型的应用包括选举政治领导人、将求职者或人才竞争者列入候选人名单、创建投资组合或根据其他用户的经验确定要推荐给在线媒体用户的项目等。更普遍的设置是参与式预算(PB)-聚合选民的偏好以从选项列表中选择要实施的项目子集的任务,每个项目都有成本,总成本不应超过给定的预算。PB于1989年在巴西启动,被设想为当地居民在其社区分配公共资金的一种方式。在接下来的几十年里,它迅速蔓延到世界各地:例如,到2022年,巴黎市将通过PB的方式为城市发展拨款超过7500万欧元。PB可以捕获城市规划以外的各种应用,例如,确定一套措施以实现特定目标(例如减少碳排放或控制病毒传播),或者在开源软件社区中分配程序员的时间。多赢家投票和参与式预算都受到了COMSOC社区的高度关注,研究人员确定了选择好的解决方案的一般原则(公理),(计算效率高的)投票规则,满足这些公理(或证明不可能性/硬度结果)。然而,大多数现有的工作都假设选民完全了解他们的偏好,并如实报告。这两个假设都不完全现实:选民可能很难对复杂的提案做出决定(例如,评估不同能源的风险和利益或实施教育改革),如果他们能从中受益,他们可以误报他们的偏好。我们建议的主要重点是系统地理解多赢家投票和参与式预算中的战略行为,重点关注相关的算法挑战。具体来说,我们将评估战略投票的稳定结果的质量,并建立计算它们的复杂性,以及分析迭代投票的动态。我们还将研究与代理人委托他们的决定,以更有知识的代理人的激励。从广义上讲,我们的目标是确定集体决策的工具,这些工具可以推动投票行为达到理想的结果,并在现实环境中表现良好,即,在不确定性和有限理性的情况下。然后,我们将与我们的项目合作伙伴合作,将这些结果应用于城市生活和分布式自治组织背景下的实际决策场景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Polukarov其他文献

Taxed congestion games with failures
Strategic Candidacy Equilibria for Common Voting Rules
  • DOI:
    10.1007/s00224-025-10220-3
  • 发表时间:
    2025-05-08
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Jérôme Lang;Nicolas Maudet;Maria Polukarov;Alice Cohen-Hadria
  • 通讯作者:
    Alice Cohen-Hadria

Maria Polukarov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Driving Behaviour in Multi-Winner Elections (BMW)
多位获胜者选举中的驾驶行为(宝马)
  • 批准号:
    EP/X038548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Research Grant
A multi-scale assessment of songbird migration physiology and behaviour.
鸣禽迁徙生理和行为的多尺度评估。
  • 批准号:
    547992-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A multi-scale assessment of songbird migration physiology and behaviour.
鸣禽迁徙生理和行为的多尺度评估。
  • 批准号:
    547992-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Multi-modal content similarity for predicting audience behaviour
用于预测受众行为的多模态内容相似度
  • 批准号:
    2481865
  • 财政年份:
    2021
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Studentship
A multi-scale assessment of songbird migration physiology and behaviour.
鸣禽迁徙生理和行为的多尺度评估。
  • 批准号:
    547992-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Stand When You Can: Feasibility of a multi-level intervention to modify sedentary behaviour among older adults in assisted living.
尽可能站立:通过多层次干预来改变辅助生活中老年人久坐行为的可行性。
  • 批准号:
    418525
  • 财政年份:
    2019
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Operating Grants
Dissecting the binding behaviour of the multi-RRM protein Rrm4 during endosomal mRNA transport in Ustilago maydis
剖析玉米黑粉菌内体 mRNA 转运过程中多 RRM 蛋白 Rrm4 的结合行为
  • 批准号:
    420693430
  • 财政年份:
    2019
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Research Units
Multi-omics of yeast behaviour in beer fermentation
啤酒发酵中酵母行为的多组学
  • 批准号:
    539216-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 64.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Bridging the gap between particle-based multi-scale modelling of the geometry and constitutive behaviour of technical textiles, and in-situ IR probing of their configuration
弥合产业用纺织品的基于粒子的几何形状和本构行为的多尺度建模与其配置的原位红外探测之间的差距
  • 批准号:
    RGPIN-2015-05865
  • 财政年份:
    2019
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Discovery Grants Program - Individual
Mobility as a Service (MaaS): Analyzing activity-travel behaviour and its application to on-demand multi-moda mobility solutions.
移动即服务 (MaaS):分析活动旅行行为及其在按需多模式移动解决方案中的应用。
  • 批准号:
    2302885
  • 财政年份:
    2019
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了