Towards The Quantum Internet: Interconnecting Quantum Networks

迈向量子互联网:互连量子网络

基本信息

  • 批准号:
    EP/X039439/1
  • 负责人:
  • 金额:
    $ 39.17万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Quantum technologies are rapidly changing the way we process information - Quantum Communication offers mathematically perfect security, Quantum Sensors can be more precise and sensitive than their classical counterparts and Quantum Computing can go beyond the best possible supercomputers. To make the best of all these technologies, they need to be connected together in much the same way classical devices are connected by the internet. This vision - the quantum internet cannot just use the classical binary encoding of data, but must exploit quantum entanglement. Entanglement is the fundamental resource that most quantum devices use akin to the zeros and ones at the core of all digital technologies. Naturally the quantum internet must allow end to end distribution of entanglement.Distributing entanglement is incredibly difficult because it can so easily be irrecoverably destroyed by loss, noise or any interaction with the environment. Around the world there are extensive efforts to develop the necessary technologies form a top down perspective. E.g. Satellites for long distance quantum communication, quantum repeaters and quantum memories, to enable efficient teleportation and storage of entanglement, etc. In this proposal I would like to consider a bottom up approach. Starting with the technology (I invented) to create a small network of say eight users in the quantum version of a local area network (Q-LAN), I want to be able to connect multiple copies of this Q-LAN together to create a seamless larger quantum network that overcomes the limitations of a Q-LAN. A useful analogy is to consider your Wi-Fi network and how it then connects to a larger network of networks. Here I propose to build a second Q-LAN in Bristol and interconnect it with the existing quantum network test bed, that I have already built, to test 3 different novel methods of linking quantum networks: The first and simplest approach is to link the quantum networks together with a trusted node. A trusted node, does not preserve quantum information but converts it classical and back again. This means that entanglement is not preserved and it limits the applications to tasks like quantum communication. Nevertheless, this will be an important step in identifying problems and bottlenecks for network traffic.The second way will exploit the dynamically reconfigurable nature of my existing Q-LAN technology and study if this can be used to interlink different quantum networks. A Q-LAN works by assigning each user one half of an entangled state (differentiated by wavelength) and allowing the users to perform joint operations on the entire entangled state to complete quantum information processing tasks. Using two Q-LANs I propose to allow users to share one half of an entangled state from either the original or the new network. If this is successful, I will be able to overcome the limitation on the number of users in a single Q-LAN and create a larger network. If this method proves scalable, it could be an excellent candidate for the quantum internet of the future.The third approach is to use quantum teleportation to "teleport" the entangled state from one Q-LAN to another, this has all the advantages of the previous method and can also be used to reduce the effects of loss.Quantum networks is an emerging field and each of these three steps constitute a unique and novel approach that has not been tried before. The key-enabling technology which will ensure that this research is both ground-breaking and successful is the wavelength multiplexed Q-LAN method I invented. In addition to this, I am also working on top down approaches like satellite based quantum communication. This new investigator award, will help me establish a new world leading research group uniquely capable of combining top down and bottom up approaches to realise my ambitions of building the quantum internet.
量子技术正在迅速改变我们处理信息的方式--量子通信提供了数学上完美的安全性,量子传感器可以比经典传感器更精确和灵敏,量子计算可以超越最好的超级计算机。为了充分利用所有这些技术,它们需要以与传统设备通过互联网连接相同的方式连接在一起。这个愿景-量子互联网不能只使用经典的二进制编码数据,但必须利用量子纠缠。纠缠是大多数量子设备使用的基本资源,类似于所有数字技术核心的0和1。当然,量子互联网必须允许端到端的纠缠分布。分布纠缠是非常困难的,因为它可以很容易地被丢失,噪音或与环境的任何相互作用不可恢复地破坏。世界各地都在努力开发必要的技术,从自上而下的角度来看。例如,用于长距离量子通信的卫星、量子中继器和量子存储器,以实现高效的隐形传态和纠缠存储等。在这个提案中,我想考虑一种自下而上的方法。从技术(我发明的)开始,在量子版本的局域网(Q-LAN)中创建一个8个用户的小型网络,我希望能够将这个Q-LAN的多个副本连接在一起,以创建一个无缝的大型量子网络,克服Q-LAN的局限性。一个有用的类比是考虑您的Wi-Fi网络以及它如何连接到更大的网络网络。在这里,我建议在布里斯托建立第二个Q-LAN,并将其与我已经建立的现有量子网络测试床互连,以测试连接量子网络的3种不同的新方法:第一种也是最简单的方法是将量子网络与可信节点连接在一起。一个可信的节点,不保存量子信息,但将其转换为经典的,并再次返回。这意味着纠缠不被保留,它限制了量子通信等任务的应用。然而,这将是识别网络流量问题和瓶颈的重要一步。第二种方法将利用我现有的Q-LAN技术的动态可重构特性,并研究是否可以将其用于互连不同的量子网络。Q-LAN的工作原理是为每个用户分配纠缠态的一半(按波长区分),并允许用户对整个纠缠态进行联合操作,以完成量子信息处理任务。使用两个Q-LAN,我建议允许用户从原始网络或新网络共享纠缠态的一半。如果这是成功的,我将能够克服在一个Q-LAN的用户数量的限制,并创建一个更大的网络。如果这种方法被证明是可扩展的,它可能是未来量子互联网的一个很好的候选者。第三种方法是使用量子隐形传态将纠缠态从一个Q-LAN“隐形传态”到另一个Q-LAN,量子网络是一个新兴的领域,这三个步骤中的每一个都构成了一种独特而新颖的方法,以前从未尝试过。我发明的波长多路复用Q-LAN方法是确保这项研究具有突破性和成功性的关键技术。除此之外,我还在研究自上而下的方法,比如基于卫星的量子通信。这个新的研究者奖,将帮助我建立一个新的世界领先的研究小组,能够结合自上而下和自下而上的方法来实现我建立量子互联网的雄心壮志。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddarth Joshi其他文献

Siddarth Joshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum-Safe-Internet
量子安全互联网
  • 批准号:
    EP/X033325/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.17万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: EDU: QUINTET: Quantum Internet Education and Training Synthesizer
合作研究:SaTC:EDU:QUINTET:量子互联网教育和培训合成器
  • 批准号:
    2324924
  • 财政年份:
    2023
  • 资助金额:
    $ 39.17万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: QUINTET: Quantum Internet Education and Training Synthesizer
合作研究:SaTC:EDU:QUINTET:量子互联网教育和培训合成器
  • 批准号:
    2324925
  • 财政年份:
    2023
  • 资助金额:
    $ 39.17万
  • 项目类别:
    Standard Grant
Entanglement from the quantum internet to quantum neuroscience
从量子互联网到量子神经科学的纠缠
  • 批准号:
    RGPIN-2020-03945
  • 财政年份:
    2022
  • 资助金额:
    $ 39.17万
  • 项目类别:
    Discovery Grants Program - Individual
Software for the Quantum Internet
量子互联网软件
  • 批准号:
    RGPIN-2022-05167
  • 财政年份:
    2022
  • 资助金额:
    $ 39.17万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a Quantum Internet
迈向量子互联网
  • 批准号:
    10002685
  • 财政年份:
    2022
  • 资助金额:
    $ 39.17万
  • 项目类别:
    Feasibility Studies
Quantum photonics devices for a quantum internet
用于量子互联网的量子光子器件
  • 批准号:
    DGDND-2020-05462
  • 财政年份:
    2022
  • 资助金额:
    $ 39.17万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Quantum-Safe-Internet
量子安全互联网
  • 批准号:
    EP/X028313/1
  • 财政年份:
    2022
  • 资助金额:
    $ 39.17万
  • 项目类别:
    Research Grant
Software for the Quantum Internet
量子互联网软件
  • 批准号:
    DGDND-2022-05167
  • 财政年份:
    2022
  • 资助金额:
    $ 39.17万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Developing use cases and quantifying resource requirements for Quantum Internet applications
开发用例并量化量子互联网应用程序的资源需求
  • 批准号:
    22K19781
  • 财政年份:
    2022
  • 资助金额:
    $ 39.17万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了