NAfANE: New Approaches for Approximate Nash Equilibria
NAfANE:近似纳什均衡的新方法
基本信息
- 批准号:EP/X039862/1
- 负责人:
- 金额:$ 63.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The main goal of this proposal is to develop new techniques with the aim of identifying the precise cut-off between tractable and intractable approximations of Nash equilibria (NE), the foundational solution-concept in Game Theory and Economics. A Nash equilibrium is a situation where no player can increase their payoff by unilaterally deviating. Ultimately our target is to develop new approaches that will enhance our understanding of equilibrium computation, the most fundamental problem in Algorithmic Game Theory. We will settle the tractability frontier of equilibrium computation for three general classes of games that are of interest to a wide variety of researchers within the communities of Economics, Mathematics, Artificial Intelligence, Machine Learning, and Computer Science.- Bimatrix Games: This is the fundamental class of games, played between two players, that has been studied extensively over the years.- Polymatrix Games: This class captures many-player games with an underlying network structure, where every node corresponds to a player, and every player interacts with the players in their neighborhood as defined by the network.This type of games received a lot of attention due to numerous applications ranging from building-blocks to hardness reductions, to applications in protein function prediction and semi-supervised learning.- Bayesian Games: This is the foundational class of games with incomplete information. We will focus on the cornerstone subclass of two-player Bayesian games. This family of games is closely related to polymatrix games, since it can be represented as a polymatrix game over a bipartite network.While there exist several results, both positive and negative, for finding approximate equilibria in the above-mentioned classes of games, the gaps between intractability and polynomial-time approximability are still large. In addition, there exist several ``well-behaved'' families of these games that cannot be captured by the current inapproximability results. These families of games could admit a polynomial-time algorithm that has not been discovered yet. The objective of this proposal is to rectify this situation: close the gaps between lower bounds and upper bounds, and identify parameters for each class of games that allow for polynomial-time algorithms.
该提案的主要目标是开发新技术,旨在确定纳什均衡(NE)的易处理和难处理近似值之间的精确截止值,这是博弈论和经济学中的基本解决方案概念。纳什均衡是一种没有参与者可以通过单方面偏离来增加收益的情况。最终,我们的目标是开发新的方法,这将提高我们对均衡计算的理解,这是数学博弈论中最基本的问题。我们将解决三个一般类别的游戏的均衡计算的易处理性前沿,这些游戏对经济学,数学,人工智能,机器学习和计算机科学领域的各种研究人员都感兴趣。Bimatrix游戏:这是两个玩家之间玩的基本游戏类,多年来一直被广泛研究。Polymatrix Games:本课程描述了具有底层网络结构的多人游戏,其中每个节点对应一个玩家,每个玩家与网络定义的邻居中的玩家进行交互。由于从构建模块到硬度降低,再到蛋白质功能预测和半监督学习的应用,这类游戏受到了广泛的关注。贝叶斯博弈:这是不完全信息博弈的基础类。我们将专注于两人贝叶斯博弈的基石子类。这类博弈与多矩阵博弈密切相关,因为它可以被表示为二部网络上的多矩阵博弈。虽然在上述博弈类中找到近似均衡有几个结果,既有正面的也有负面的,但在难处理性和多项式时间近似性之间的差距仍然很大。此外,有几个“很好的”家庭,这些游戏,不能捕捉到目前的不可逼近的结果。这些游戏家族可以接受尚未发现的多项式时间算法。这个建议的目的是纠正这种情况:关闭下界和上界之间的差距,并确定参数的每一类游戏,允许多项式时间算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Argyrios Deligkas其他文献
The Parameterized Complexity of Connected Fair Division
连接公平划分的参数化复杂性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Argyrios Deligkas;E. Eiben;R. Ganian;Thekla Hamm;S. Ordyniak - 通讯作者:
S. Ordyniak
Some coordination problems are harder than others
有些协调问题比其他问题更难
- DOI:
10.48550/arxiv.2311.03195 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Argyrios Deligkas;E. Eiben;G. Gutin;Philip R. Neary;Anders Yeo - 通讯作者:
Anders Yeo
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Tree Polymatrix Games are PPAD-hard
树多矩阵游戏是 PPAD 难的
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Argyrios Deligkas;John Fearnley;Rahul Savani - 通讯作者:
Rahul Savani
Directed Graph Minors and Serial-Parallel Width
有向图次要和串并宽度
- DOI:
10.4230/lipics.mfcs.2018.44 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Argyrios Deligkas;R. Meir - 通讯作者:
R. Meir
Argyrios Deligkas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 63.73万 - 项目类别:
Studentship
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Research Grant
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
EU-Funded
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
- 批准号:
24K09176 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
- 批准号:
2330759 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Developing new approaches and structural materials to rebuild damaged Ukrainian infrastructure with environmental sustainability considerations
EAGER:IMPRESS-U:开发新方法和结构材料,在考虑环境可持续性的情况下重建受损的乌克兰基础设施
- 批准号:
2412196 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Standard Grant
A History of Storms: New Approaches to Climate Fiction and Climate Literacy
风暴史:气候小说和气候素养的新方法
- 批准号:
AH/Y000196/1 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Fellowship
New approaches measuring Australia’s creative workforce: Beyond the Census
衡量澳大利亚创意劳动力的新方法:超越人口普查
- 批准号:
LP230100198 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Linkage Projects
New mathematical approaches to learn the equations of life from noisy data
从噪声数据中学习生命方程的新数学方法
- 批准号:
DP230100025 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Discovery Projects
Ritual, Rubbish and Retrieval: new approaches to Roman river finds
仪式、垃圾和检索:罗马河流发现的新方法
- 批准号:
AH/Y007514/1 - 财政年份:2024
- 资助金额:
$ 63.73万 - 项目类别:
Research Grant