EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing

食用:环境驱动的人体规模电磁协同感应

基本信息

  • 批准号:
    EP/Y002008/1
  • 负责人:
  • 金额:
    $ 20.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The ability to pervasively monitor the activities, vital signs, and biomarkers of healthy and recovering individuals has been investigated for decades, and could revolutionise the healthcare sector enabling a new generation of predictive diagnostics. Electronic devices, the heart of such sensors, however, represent a growing environmental emergency. Traditional electronic fabrication processes are extremely power and water hungry and are constantly depleting a finite reserve of critical raw materials. Moreover, at their end-of-life, waste electrical and electronic equipment (WEEE) is generated and typically shipped to overseas disassembly facilities which are predominantly manual, risking both the environment and the local communities; the UK is currently the world's 2nd largest producer of WEEE/capita. Unless an alternative wearable sensing paradigm emerges, the sensorisation of everyday garments will add to this exponential growth in WEEE, and the electronics industry will inevitably be stunted by its inability to find alternative sustainable materials.The vision of this collaborative research is to develop an Environmentally Driven Body-Scale Electromagnetic Co-Sensing (EDIBLES) methodology that enables the next generation of wearables to drastically reduce the environmental impact of its cradle-to-grave life cycle. We will develop a methodology for fusing passive, biodegradable, and chip-free wireless electromagnetic sensors with recyclable radio frequency identification (RFID) electronics. Printed on flexible and biodegradable substrates such as eco fabrics and paper, we will demonstrate the first biodegradable microwave components with performance matching that of metal nanoparticle inks. Our fabrication process will be roll-to-roll-friendly, scalable to very large (>1 square metre) areas, and will not require cleanrooms or costly infrastructure. We will demonstrate that printed organic RF structures can match the performance of the metal-based non-biodegradable and non-biocompatible counterparts up to 110 GHz and develop sensing structures operating at sub-THz frequencies (700 to 1,100 GHz) based on polymers and 2D materials. The project is culminated by a novel demonstrator, the EDIBLES garment. The EDIBLES garment, combined with our new read-out mechanism, will be capable of wirelessly measuring, at a metres-range, human motion, vital signs, and environmental conditions, for multiple subjects in a multi-user environment. The EDIBLES garment will be a zero-WEEE demo with components that are either biodegradable or recyclable, with no requirement for special disassembly procedures. The demo will be used to engage industry users, promote sustainable electronics design through an open-source tool, and in a programme of public engagement and STEM outreach activities across the three international institutions, showing the full potential of sustainable wireless technologies.EDIBLES reaches beyond developing the technology to championing and advocating its use to the research community and relevant industry stakeholders. As our methodology will be co-created with two research leaders in wireless sensing, Prof. Gaetano Marrocco from the University of Rome Tor Vergata and Prof. Mohammad Zarifi from the University of British Columbia, the team will champion the sustainability-driven design of wireless sensors, extending the identified guidelines to the activities of their group. We will advocate this through workshops at leading international symposia and by hosting an international sustainable wireless technologies meeting in Glasgow, bringing interdisciplinary experts from across the UK to grow the engagement with our international partnership.
广泛监测健康和康复个体的活动、生命体征和生物标志物的能力已经被研究了几十年,它可能会彻底改变医疗保健行业,使新一代的预测诊断成为可能。然而,作为此类传感器核心的电子设备,代表着日益严重的环境紧急情况。传统的电子制造工艺非常耗电和耗水,并且不断消耗有限的关键原材料储备。此外,报废的电器和电子设备通常会被运往以人工为主的海外拆解设施,对环境和当地社区都有风险;英国目前是世界上人均报废电子电气设备的第二大生产国。除非出现另一种可穿戴式传感范例,否则日常服装的传感器化将加剧WEEE的指数级增长,而电子行业将不可避免地因无法找到替代可持续材料而受到阻碍。这项合作研究的愿景是开发一种环境驱动的身体尺度电磁协同传感(EDIBLES)方法,使下一代可穿戴设备能够大大减少其从摇篮到坟墓的生命周期对环境的影响。我们将开发一种方法,将无源、可生物降解、无芯片的无线电磁传感器与可回收的射频识别(RFID)电子设备融合在一起。在柔性和可生物降解的基材上印刷,如生态织物和纸张,我们将展示第一个可生物降解的微波组件,其性能与金属纳米颗粒油墨相匹配。我们的制造过程将是卷对卷友好的,可扩展到非常大(bb100平方米)的区域,并且不需要洁净室或昂贵的基础设施。我们将证明印刷有机射频结构可以匹配高达110 GHz的金属基不可生物降解和非生物相容性对应物的性能,并开发基于聚合物和2D材料的亚太赫兹频率(700至1,100 GHz)的传感结构。该项目的高潮是一个新颖的示范,EDIBLES服装。EDIBLES服装与我们新的读出机制相结合,将能够在一米范围内无线测量人体运动、生命体征和环境条件,适用于多用户环境中的多受试者。EDIBLES服装将是零weee演示,其组件要么是可生物降解的,要么是可回收的,不需要特殊的拆卸程序。该演示将用于吸引行业用户,通过开源工具促进可持续电子设计,并在三个国际机构的公众参与计划和STEM外展活动中展示可持续无线技术的全部潜力。EDIBLES超越了开发这项技术,而是为研究界和相关行业利益相关者倡导和倡导这项技术的使用。由于我们的方法将与两位无线传感领域的研究领导者,罗马大学的Gaetano Marrocco教授和英属哥伦比亚大学的Mohammad Zarifi教授共同创建,该团队将支持无线传感器的可持续驱动设计,将确定的指导方针扩展到他们小组的活动中。我们将在领先的国际研讨会上倡导这一点,并在格拉斯哥举办国际可持续无线技术会议,邀请来自英国各地的跨学科专家与我们的国际合作伙伴关系发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mahmoud Wagih其他文献

Battery-Free Wireless Node Powered using High-Efficiency Harvesting of 900 MHz GFSK-Modulated Packets with a Compact Rectenna
使用紧凑型整流天线高效采集 900 MHz GFSK 调制数据包供电的无电池无线节点
  • DOI:
    10.1109/wpw54272.2022.9854015
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahmoud Wagih
  • 通讯作者:
    Mahmoud Wagih
RF Energy Harvesting Using Complex-Conjugate Rectennas Along Single-Wire Transmission Lines
沿单线传输线使用复合共轭整流天线收集射频能量
Microwave to mmWave Wireless Power Transfer: An Overview of the Design Challenges with a Focus on UK-Based R&D
微波到毫米波无线功率传输:设计挑战概述,重点关注英国 R
Textile-based Radio Frequency Energy Harvesting and Storage using Ultra-Compact Rectennas with High Effective-to-Physical Area Ratio
使用具有高有效物理面积比的超紧凑矩形天线进行基于纺织品的射频能量收集和存储
Flexible 2.4 GHz Node for Body Area Networks With a Compact High-Gain Planar Antenna
具有紧凑型高增益平面天线的用于体域网的灵活 2.4 GHz 节点

Mahmoud Wagih的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Identifying mechanisms of environmentally driven long-term crack growth in brittle rocks
识别环境驱动的脆性岩石长期裂纹扩展的机制
  • 批准号:
    RGPIN-2018-05918
  • 财政年份:
    2022
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Discovery Grants Program - Individual
Environmentally-responsive, dual-stage microparticle drug depots with healing-driven growth factor delivery for craniofacial bone regeneration
环境响应型双级微粒药物库,具有愈合驱动的生长因子输送,用于颅面骨再生
  • 批准号:
    10527614
  • 财政年份:
    2022
  • 资助金额:
    $ 20.93万
  • 项目类别:
Environmentally-responsive, dual-stage microparticle drug depots with healing-driven growth factor delivery for craniofacial bone regeneration
环境响应型双级微粒药物库,具有愈合驱动的生长因子输送,用于颅面骨再生
  • 批准号:
    10657767
  • 财政年份:
    2022
  • 资助金额:
    $ 20.93万
  • 项目类别:
Identifying mechanisms of environmentally driven long-term crack growth in brittle rocks
识别环境驱动的脆性岩石长期裂纹扩展的机制
  • 批准号:
    RGPIN-2018-05918
  • 财政年份:
    2021
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Discovery Grants Program - Individual
Identifying mechanisms of environmentally driven long-term crack growth in brittle rocks
识别环境驱动的脆性岩石长期裂纹扩展的机制
  • 批准号:
    RGPIN-2018-05918
  • 财政年份:
    2020
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Discovery Grants Program - Individual
Identifying mechanisms of environmentally driven long-term crack growth in brittle rocks
识别环境驱动的脆性岩石长期裂纹扩展的机制
  • 批准号:
    RGPIN-2018-05918
  • 财政年份:
    2019
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Discovery Grants Program - Individual
Identifying mechanisms of environmentally driven long-term crack growth in brittle rocks
识别环境驱动的脆性岩石长期裂纹扩展的机制
  • 批准号:
    DGECR-2018-00137
  • 财政年份:
    2018
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Discovery Launch Supplement
Climate change and marine pathogens: Environmentally-driven changes in Vibrio vulnificus and Vibrio parahaemolyticus gene expression and pathogenicity
气候变化和海洋病原体:环境驱动的创伤弧菌和副溶血弧菌基因表达和致病性的变化
  • 批准号:
    10443652
  • 财政年份:
    2018
  • 资助金额:
    $ 20.93万
  • 项目类别:
Climate change and marine pathogens: Environmentally-driven changes in Vibrio vulnificus and Vibrio parahaemolyticus gene expression and pathogenicity
气候变化和海洋病原体:环境驱动的创伤弧菌和副溶血弧菌基因表达和致病性的变化
  • 批准号:
    10218174
  • 财政年份:
    2018
  • 资助金额:
    $ 20.93万
  • 项目类别:
Identifying mechanisms of environmentally driven long-term crack growth in brittle rocks
识别环境驱动的脆性岩石长期裂纹扩展的机制
  • 批准号:
    RGPIN-2018-05918
  • 财政年份:
    2018
  • 资助金额:
    $ 20.93万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了