Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications

对称性和可积性的拉格朗日多重形式:分类、几何和应用

基本信息

  • 批准号:
    EP/Y006712/1
  • 负责人:
  • 金额:
    $ 116.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Whenever something moves or changes, it can be modelled mathematically using a differential equation. Solving a differential equation means determining the state of the system (the thing which is moving) at any time in the future from its current state. For many differential equations this is impossible: the systems they describe exhibit complicated behaviour (picture waves on a stormy ocean - their long-term movements are very hard to predict) and it is impossible to write a formula describing future states. Integrable systems are the exceptions: they are differential equations that can be solved and represent dynamics that look orderly (picture a wave on a canal produced by a boat that has suddenly stopped - it keeps traveling forward in a predictable way). The orderly behaviour of an integrable system is caused by some hidden mathematical structure of the differential equation. This hidden structure can take many different forms. Some integrable systems possess several forms of hidden structures, but no form applies to all integrable systems. There is no universal theory of the mathematics of integrable systems.This Fellowship explores a recent development in integrable systems, the central idea of which comes from physics. Almost every physical theory can be described by the fact that something is minimised. Such a description is called a variational principle. In optics, for example, a ray of light will always take the fastest possible path. In other cases, the quantity that is minimised may be less intuitive, but a variational principle always provides powerful mathematical tools.The theory of "Lagrangian multiforms" uses variational principles to capture the hidden structures of integrable systems. It is a recent development, the advantages of which are only starting to come to light. One advantage is that Lagrangian multiforms apply to discrete systems in the same way as to continuous systems. This provides insight into relations between integrable systems of both types. Here, "discrete" means that space and time do not form a continuum, but work in fixed steps (like digital video consists of a finite number of pixels and a finite number of frames per second).This Fellowship investigates the benefits of Lagrangian multiforms in three main areas:1. Relations between integrable systems of different types and their classification. One example of such relations is found in the Lagrangian multiform theory of semi-discrete systems (which involve both discrete and continuous variables). Some semi-discrete Lagrangian multiforms exhibit surprising connections to fully continuous integrable systems. This is only one of several contexts in which Lagrangian multiforms provide relations between equations of different types. This Fellowship will deliver a broad investigation of this phenomenon, employ it to transfer insights between equations of different types, and classify equations of interest.2. Geometry. In the theory of Lagrangian multiforms, parameters describing symmetries of the system are treated in the same way as the time-variable. Together they form "multi-time". This Fellowship will study geometric aspects of Lagrangian multiform theory. Of particular interest are geometric structures within multi-time, related to special solutions of the integrable system, as well as the geometry of multi-time itself. This will allow us to capture a larger class of differential equations and transfer the insights of Lagrangian multiforms beyond the realm of integrable systems.3. Applications. This Fellowship will investigate applications of Lagrangian multiforms in computational science and in fundamental physics. Variational principles have many applications in both these areas, but not all are fully understood from a rigorous mathematical perspective. This research will employ Lagrangian multiforms as well as other recent developments to secure the mathematical foundation of these applications
无论什么东西移动或变化,都可以用微分方程进行数学建模。解微分方程意味着从当前状态确定系统(运动的物体)在未来任何时候的状态。对于许多微分方程来说,这是不可能的:它们所描述的系统表现出复杂的行为(想象暴风雨海洋上的波浪-它们的长期运动很难预测),并且不可能写出描述未来状态的公式。可积系统是例外:它们是可以求解的微分方程,代表看起来有序的动力学(想象一下运河上突然停下来的船产生的波浪-它以可预测的方式继续前进)。可积系统的有序行为是由微分方程的某些隐藏的数学结构引起的。这种隐藏的结构可以采取许多不同的形式。某些可积系统具有几种形式的隐藏结构,但没有一种形式适用于所有可积系统。可积系统的数学没有普适的理论。本奖学金探讨了可积系统的最新发展,其中心思想来自物理学。几乎每一个物理理论都可以用某个东西被最小化的事实来描述。这样的描述称为变分原理。例如,在光学中,一束光总是以最快的路径传播。在其他情况下,最小化的量可能不那么直观,但变分原理总是提供强大的数学工具。“拉格朗日多形”理论使用变分原理来捕捉可积系统的隐藏结构。这是最近的发展,其优势才刚刚开始显现。一个优点是拉格朗日多形适用于离散系统的方式与连续系统相同。这提供了深入了解这两种类型的可积系统之间的关系。在这里,“离散”意味着空间和时间不形成连续体,而是以固定的步骤工作(如数字视频由有限数量的像素和有限数量的每秒帧组成)。该奖学金研究拉格朗日多形式在三个主要领域的好处:1.不同类型可积系的关系及其分类。这种关系的一个例子是半离散系统的拉格朗日多形式理论(涉及离散和连续变量)。一些半离散的拉格朗日多形表现出令人惊讶的连接到完全连续的可积系统。这只是拉格朗日多形式提供不同类型方程之间关系的几个背景之一。该奖学金将提供对这种现象的广泛调查,利用它在不同类型的方程之间转移见解,并对感兴趣的方程进行分类。几何在拉格朗日多形理论中,描述系统对称性的参数被以与时间变量相同的方式处理。它们共同构成“多时间”。该奖学金将研究拉格朗日多形式理论的几何方面。特别感兴趣的是多时间内的几何结构,与可积系统的特殊解有关,以及多时间本身的几何。这将使我们能够捕获更大类的微分方程和转移的拉格朗日多形式的见解超出了可积系统的领域。3.应用.该奖学金将研究拉格朗日多形式在计算科学和基础物理中的应用。变分原理在这两个领域都有许多应用,但并不是所有的应用都能从严格的数学角度得到充分的理解。这项研究将采用拉格朗日多形式以及其他最近的发展,以确保这些应用的数学基础

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship

相似海外基金

Demonstration of multiforms of insect cytokine receptors
多种形式的昆虫细胞因子受体的演示
  • 批准号:
    14340261
  • 财政年份:
    2002
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Steroid receptors-multiforms and their significance on brain differentiation
多种形式的类固醇受体及其对大脑分化的意义
  • 批准号:
    07458257
  • 财政年份:
    1995
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了