Robotic skill transfer and augmentation for contact-rich tasks in manufacturing (STAMAN)
制造中接触丰富的任务的机器人技能转移和增强 (STAMAN)
基本信息
- 批准号:EP/Y02270X/1
- 负责人:
- 金额:$ 125.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many assembly and disassembly tasks in manufacturing have small clearances and limited accessibility, such as shaft-hole insertion/separation and bolt-nut assembly/disassembly. Using robots in these contact-rich tasks is more complex than those having no physical contacts (e.g. computer visual inspection) or simple contacts (e.g. cutting, welding, pick-and-place). The deployment of robots in contact-rich tasks has been limited to date. The contact-rich tasks that involve complex shapes, small clearances or deformable materials are particularly challenging to robotise due to the likely events of jamming and wedging. Our previous research has investigated techniques that allow robots to learn contact-rich skills (e.g. complex motion plans and force control policies) using two main AI-based pathways: (1) self-learning from trial-and-error, and (2) learning from human demonstrations. The two participating universities, Birmingham and Sheffield, have research experiences in (1) and (2), respectively.A key challenge observed in the current research is that in many cases a robot's contact-rich skill cannot be performed by other robots of different motion properties (e.g. accuracy, precision and stiffness), or be applied to a new task with variations (e.g. differences in object geometry, shape, and materials). This is because a robotic contact-rich skill, i.e. control policies and motion plans, is usually acquired for a specific task and cannot be adopted by new robots or in new tasks.STAMAN's vision is to create AI-based mechanisms to allow robots to share and recreate obtained digital skills (e.g. motion and force/torque control strategies) to allow easy automation scale-up for contact-rich tasks. This includes considering two research questions: 1) For skill transfer - how can a contact-rich skill be quickly transferred to a different robot (e.g. transferring a bolt-nut separation skill from a high-precision robot to a low-precision robot)? 2) For skill augmentation - how can existing contact-rich skills be used to create new contact-rich skills (e.g. augmentation of rigid-material skills to deal with soft materials)?The project will develop a portfolio of research into the science of digital skills for contact-rich tasks, focusing on common manufacturing tasks such as bolt-nut assembly/disassembly, peg-hole insertion/separation, and shaft-ring assembly/disassembly. The ability to transfer and augment digital skills for contact-rich tasks will allow automation systems to be implemented on a larger scale, with minimal manual setting and fine-tuning required. STAMAN aims to create transferrable and augmentable digital skills that will underpin the development of mass machine skills for future manufacturing, similar to how industrial robots have contributed to modern mass production.The proposed research encourages more use of robots in assembly (e.g. automotive, aerospace, electronics, etc.) and disassembly (e.g. repairs, remanufacturing and recycling), and thus directly contributes to the UK's Made Smarter initiative and the circular economy goals.
制造业中许多组装和拆卸任务都具有较小的间隙和有限的可访问性,例如轴孔插入/分离和螺栓 - 螺栓固定组件/拆卸。在这些接触式任务中使用机器人比没有物理接触(例如计算机视觉检查)或简单接触(例如切割,焊接,拾取和位置)的机器人更为复杂。迄今为止,机器人在接触率丰富的任务中的部署已限制。涉及复杂形状,较小的间隙或可变形材料的接触式任务尤其具有挑战性,这对于可能的干扰和楔子而言可能是挑战性的。我们以前的研究研究了允许机器人使用两个基于AI的基于AI的途径学习接触技巧(例如复杂的运动计划和力量控制策略)的技术:(1)从反复试验中进行自我学习,以及(2)从人类示范中学习。 The two participating universities, Birmingham and Sheffield, have research experiences in (1) and (2), respectively.A key challenge observed in the current research is that in many cases a robot's contact-rich skill cannot be performed by other robots of different motion properties (e.g. accuracy, precision and stiffness), or be applied to a new task with variations (e.g. differences in object geometry, shape, and materials).这是因为一种机器人的接触技巧,即控制政策和运动计划,通常是用于特定任务的,而新机器人或新任务都不能采用。Staman的愿景是创建基于AI的机制,以允许机器人共享和重新培养获得的数字技能(例如,运动和力量控制策略),以便容易自动化自动化量表。这包括考虑两个研究问题:1)用于技能转移 - 如何将接触率丰富的技能迅速转移到其他机器人(例如将螺栓-NUT分离技能从高精度机器人转移到低精确机器人)? 2)对于技巧增强 - 如何使用现有的富含接触技巧来创建新的接触技巧(例如,增强刚性材料的技能来处理软材料)?该项目将开发针对数字技能科学的研究组合,以涉及接触型任务的数字技能科学,重点介绍了BOLT-NUT组装工作,例如BOLT-NUT组装/分离/分离型组装/固定型/固定型,并将其组装,固定型和竖井。传输和增强数字技能以完成接触式任务的能力将使自动化系统更加规模实施,并且需要最少的手动设置和微调。耐力旨在创造可转让且可增强的数字技能,这将构成与工业机器人如何促进现代大规模生产的贡献的大众机器技能的发展。拟议的研究鼓励在组装中更多地使用机器人(例如自动,航空航天,航空,电子学等),以及对公共造成的贡献,以及贡献,并贡献了Recrairs,以及Remanubled和Remcrand和Remcring and remcrand and Cruptring and cormanting and concrand and concring and concring and concring y。倡议和循环经济目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongjing Wang其他文献
Visual edge feature detection and guidance under 3D interference: A case study on deep groove edge features for manufacturing robots with 3D vision sensors
- DOI:
10.1016/j.sna.2024.116082 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Zidong Wu;Hong Lu;Yongquan Zhang;He Huang;Zhi Liu;Jun Zhang;Xu Feng;Yongjie He;Yongjing Wang - 通讯作者:
Yongjing Wang
Effects of organic matter, ammonia, bromide, and hydrogen peroxide on bromate formation during water ozonation
- DOI:
10.1016/j.chemosphere.2021.131352 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:
- 作者:
Yongjing Wang;Tao Man;Ruolin Zhang;Xinyu Yan;Songtao Wang;Minglu Zhang;Pan Wang;Lianhai Ren;Jianwei Yu;Cheng Li - 通讯作者:
Cheng Li
Addition of hydrogen peroxide for the simultaneous control of bromated and odor during advanced drinking water treatment using ozone
在使用臭氧的高级饮用水处理过程中添加过氧化氢以同时控制溴化物和气味
- DOI:
- 发表时间:
- 期刊:
- 影响因子:6.9
- 作者:
Yongjing Wang;Jianwei Yu;Dong Zhang;Min Yang - 通讯作者:
Min Yang
Co-N bond promotes the H* pathway for the electrocatalytic reduction of nitrate (NO<sub>3</sub>RR) to ammonia
- DOI:
10.1016/j.jece.2023.109718 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Miao Liu;Zhenghao Lu;Linghan Yang;Renmin Gao;Xinying Zhang;Yongjing Wang;Yonghao Wang - 通讯作者:
Yonghao Wang
Sustainable self-healing structural composites
- DOI:
- 发表时间:
2017-07 - 期刊:
- 影响因子:4.7
- 作者:
Yongjing Wang - 通讯作者:
Yongjing Wang
Yongjing Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongjing Wang', 18)}}的其他基金
Self-learning robotics for industrial contact-rich tasks (ATARI): enabling smart learning in automated disassembly
用于工业接触丰富任务的自学习机器人(ATARI):在自动拆卸中实现智能学习
- 批准号:
EP/W00206X/1 - 财政年份:2022
- 资助金额:
$ 125.8万 - 项目类别:
Research Grant
相似国自然基金
技能匹配视角下我国工科毕业生的就业流动及其经济效应
- 批准号:72304230
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向3C异构零部件装配的机器人复杂操作技能学习研究
- 批准号:62373225
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
执行技能训练联合动机行为治疗对注意缺陷多动障碍青少年疗效及脑机制
- 批准号:82371557
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
中国高技能人才迁移的格局变迁及演化机制研究
- 批准号:42301278
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向非抓持式动态作业任务的腿足机器人技能学习与运动控制研究
- 批准号:62373223
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
I-TRANSFER-HF: Improving TRansitions ANd OutcomeS for Heart FailurE Patients in Home Health CaRe: A Type 1 Hybrid Effectiveness Implementation Trial
I-TRANSFER-HF:改善家庭医疗保健中心力衰竭患者的过渡和结果:1 型混合有效性实施试验
- 批准号:
10714524 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Genomic and bioinformatic approaches for understanding the effects of childhood adversity on primary tooth formation and caries development in young children
基因组和生物信息学方法用于了解童年逆境对幼儿乳牙形成和龋齿发展的影响
- 批准号:
10739519 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Skill Discovery and Transfer for Adaptive Activity Understanding
适应性活动理解的技能发现和迁移
- 批准号:
22KJ0999 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows