Robotic skill transfer and augmentation for contact-rich tasks in manufacturing (STAMAN)
制造中接触丰富的任务的机器人技能转移和增强 (STAMAN)
基本信息
- 批准号:EP/Y02270X/1
- 负责人:
- 金额:$ 125.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many assembly and disassembly tasks in manufacturing have small clearances and limited accessibility, such as shaft-hole insertion/separation and bolt-nut assembly/disassembly. Using robots in these contact-rich tasks is more complex than those having no physical contacts (e.g. computer visual inspection) or simple contacts (e.g. cutting, welding, pick-and-place). The deployment of robots in contact-rich tasks has been limited to date. The contact-rich tasks that involve complex shapes, small clearances or deformable materials are particularly challenging to robotise due to the likely events of jamming and wedging. Our previous research has investigated techniques that allow robots to learn contact-rich skills (e.g. complex motion plans and force control policies) using two main AI-based pathways: (1) self-learning from trial-and-error, and (2) learning from human demonstrations. The two participating universities, Birmingham and Sheffield, have research experiences in (1) and (2), respectively.A key challenge observed in the current research is that in many cases a robot's contact-rich skill cannot be performed by other robots of different motion properties (e.g. accuracy, precision and stiffness), or be applied to a new task with variations (e.g. differences in object geometry, shape, and materials). This is because a robotic contact-rich skill, i.e. control policies and motion plans, is usually acquired for a specific task and cannot be adopted by new robots or in new tasks.STAMAN's vision is to create AI-based mechanisms to allow robots to share and recreate obtained digital skills (e.g. motion and force/torque control strategies) to allow easy automation scale-up for contact-rich tasks. This includes considering two research questions: 1) For skill transfer - how can a contact-rich skill be quickly transferred to a different robot (e.g. transferring a bolt-nut separation skill from a high-precision robot to a low-precision robot)? 2) For skill augmentation - how can existing contact-rich skills be used to create new contact-rich skills (e.g. augmentation of rigid-material skills to deal with soft materials)?The project will develop a portfolio of research into the science of digital skills for contact-rich tasks, focusing on common manufacturing tasks such as bolt-nut assembly/disassembly, peg-hole insertion/separation, and shaft-ring assembly/disassembly. The ability to transfer and augment digital skills for contact-rich tasks will allow automation systems to be implemented on a larger scale, with minimal manual setting and fine-tuning required. STAMAN aims to create transferrable and augmentable digital skills that will underpin the development of mass machine skills for future manufacturing, similar to how industrial robots have contributed to modern mass production.The proposed research encourages more use of robots in assembly (e.g. automotive, aerospace, electronics, etc.) and disassembly (e.g. repairs, remanufacturing and recycling), and thus directly contributes to the UK's Made Smarter initiative and the circular economy goals.
制造中的许多装配和拆卸任务具有小间隙和有限的可及性,例如轴孔插入/分离和螺栓螺母装配/拆卸。在这些接触丰富的任务中使用机器人比没有物理接触(例如计算机视觉检查)或简单接触(例如切割、焊接、拾取和放置)的任务要复杂得多。到目前为止,机器人在接触丰富的任务中的部署一直有限。接触丰富的任务涉及复杂的形状、小间隙或可变形材料,由于可能发生卡住和楔入事件,因此对机器人来说尤其具有挑战性。我们之前的研究已经调查了允许机器人使用两种主要的基于人工智能的途径学习接触丰富的技能(例如复杂的运动计划和力控制策略)的技术:(1)从试错中自我学习,(2)从人类演示中学习。伯明翰和谢菲尔德两所参与研究的大学分别拥有(1)和(2)方面的研究经验。当前研究中观察到的一个关键挑战是,在许多情况下,机器人的丰富接触技能无法由其他具有不同运动特性(如精确度、精确度和刚性)的机器人执行,或者无法应用于具有不同变化的新任务(例如,物体几何形状和材料的差异)。这是因为机器人接触丰富的技能,即控制策略和运动计划,通常是针对特定任务获得的,不能被新机器人或新任务采用。STAMAN的愿景是创建基于人工智能的机制,允许机器人共享和重新创建获得的数字技能(例如,运动和力/力矩控制策略),以便轻松地自动化扩展接触丰富的任务。这包括考虑两个研究问题:1)对于技能转移-如何将接触丰富的技能快速转移到不同的机器人上(例如,将螺栓螺母分离技能从高精度机器人转移到低精度机器人)?2)对于技能增强-如何使用现有的丰富接触技能来创造新的接触丰富技能(例如,增强刚性材料技能以处理软材料)?该项目将开发一系列针对接触丰富任务的数字技能科学的研究,重点是常见的制造任务,如螺栓螺母组装/拆卸,销孔插入/分离、轴环装配/拆卸。为联系人丰富的任务转移和增强数字技能的能力将使自动化系统能够在更大范围内实施,所需的手动设置和微调最少。斯塔曼的目标是创造可转移和可扩展的数字技能,这些技能将为未来制造的大规模机器技能的发展奠定基础,类似于工业机器人对现代大规模生产的贡献。拟议的研究鼓励在装配(例如汽车、航空航天、电子产品等)中更多地使用机器人。此外,该项目还将用于制造和拆卸(如维修、再制造和回收),从而直接促进英国的Made Smarter倡议和循环经济目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongjing Wang其他文献
Enabling accurate detection and localization of bearing faults under noise and vibration
在噪声和振动环境下实现对轴承故障的精确检测和定位
- DOI:
10.1016/j.apacoust.2024.110528 - 发表时间:
2025-03-30 - 期刊:
- 影响因子:3.600
- 作者:
Wei Zhang;Hong Lu;Yongquan Zhang;Yongjing Wang;Zhangjie Li;Minghui Yang;Yue Cui - 通讯作者:
Yue Cui
Effects of organic matter, ammonia, bromide, and hydrogen peroxide on bromate formation during water ozonation
- DOI:
10.1016/j.chemosphere.2021.131352 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:
- 作者:
Yongjing Wang;Tao Man;Ruolin Zhang;Xinyu Yan;Songtao Wang;Minglu Zhang;Pan Wang;Lianhai Ren;Jianwei Yu;Cheng Li - 通讯作者:
Cheng Li
Design of a compliant device for peg-hole separation in robotic disassembly
- DOI:
10.1007/s00170-022-10573-w - 发表时间:
2022-12-14 - 期刊:
- 影响因子:3.100
- 作者:
Shizhong Su;Duc Truong Pham;Chunqian Ji;Yongjing Wang;Jun Huang;Wei Zhou;Haolin Wang - 通讯作者:
Haolin Wang
Co-N bond promotes the H pathway for the electrocatalytic reduction of nitrate (NO3RR) to ammonia
- DOI:
10.1016/j.jece.2023.109718 - 发表时间:
2023 - 期刊:
- 影响因子:7.7
- 作者:
Miao Liu;Zhenghao Lu;Linghan Yang;Renmin Gao;Xinying Zhang;Yongjing Wang;Yonghao Wang - 通讯作者:
Yonghao Wang
Sustainable self-healing structural composites
- DOI:
- 发表时间:
2017-07 - 期刊:
- 影响因子:4.7
- 作者:
Yongjing Wang - 通讯作者:
Yongjing Wang
Yongjing Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongjing Wang', 18)}}的其他基金
Self-learning robotics for industrial contact-rich tasks (ATARI): enabling smart learning in automated disassembly
用于工业接触丰富任务的自学习机器人(ATARI):在自动拆卸中实现智能学习
- 批准号:
EP/W00206X/1 - 财政年份:2022
- 资助金额:
$ 125.8万 - 项目类别:
Research Grant
相似海外基金
I-TRANSFER-HF: Improving TRansitions ANd OutcomeS for Heart FailurE Patients in Home Health CaRe: A Type 1 Hybrid Effectiveness Implementation Trial
I-TRANSFER-HF:改善家庭医疗保健中心力衰竭患者的过渡和结果:1 型混合有效性实施试验
- 批准号:
10714524 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Genomic and bioinformatic approaches for understanding the effects of childhood adversity on primary tooth formation and caries development in young children
基因组和生物信息学方法用于了解童年逆境对幼儿乳牙形成和龋齿发展的影响
- 批准号:
10739519 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Skill Discovery and Transfer for Adaptive Activity Understanding
适应性活动理解的技能发现和迁移
- 批准号:
22KJ0999 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
- 批准号:
10906499 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Antigen presentation to the adaptive immune system in the choroid contributes to ocular autoimmune disease
脉络膜中的适应性免疫系统的抗原呈递导致眼部自身免疫性疾病
- 批准号:
10740465 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
A Progressive Training Method for Sports Skill Acquisition using Muscular Motion Style Transfer
使用肌肉运动风格迁移获取运动技能的渐进训练方法
- 批准号:
23KJ0917 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Using virtual reality to advance research and learning and promote positive skill transfer in complex environments with applications in enhanced flight training
职业:利用虚拟现实推进研究和学习,并在复杂环境中促进积极的技能转移,并应用于增强飞行训练
- 批准号:
2237851 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:
Continuing Grant
Enhancing robotic head and neck surgical skills using stimulated simulation
使用刺激模拟增强机器人头颈手术技能
- 批准号:
10586874 - 财政年份:2023
- 资助金额:
$ 125.8万 - 项目类别:














{{item.name}}会员




