Passivation by Ultimate Ligand-Surface Activation Rationalized by NMR
通过 NMR 合理化最终配体表面活化的钝化
基本信息
- 批准号:EP/Y023781/1
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dynamic nuclear polarization (DNP)-enhanced solid-state NMR spectroscopy has proven in recent years to be a powerful technique for the characterization of challenging solid materials and their interfaces. Substantially increased sensitivity of NMR experiments becomes possible through DNP, where the large polarization of unpaired electron spins is transferred to the desired nuclei. For inorganic nanoparticles (NPs) surrounded with sources of unpaired electrons, known as polarizing agents, polarization transfers are mainly to their surfaces. Therefore, surface selectivity, in addition to increased sensitivity, is achieved and this can be used to study the surface chemistry of NPs. The capping of NPs with inorganic ligands (ILs), rather than conventional organic ligands, has been proposed to improve charge carrier lifetime in solids composed of assemblies of NPs, usually termed colloidal quantum dot solids (CQDSs). Substantial increases in transport properties and method versatility have led researchers to explore many types of IL to improve the mobility of charge carriers. However, gaining a detailed understanding of the surface chemistry of IL-capped NPs remains a challenging task and is thus still lacking. This project aims to correlate the surface chemistry and interfaces of ligand-capped CQDSs with their performance. Surface characterization of IL-capped NPs will be carried out by advanced DNP-enhanced solid-state NMR spectroscopy. Photoluminescence and conductivity measurements will indicate the effect on charge carrier lifetimes in assembled CQDSs. Therefore, the proposed research will result in a breakthrough atomic-level understanding of how IL choice and surface chemistry influences charge transport and will lead to a generalized method for achieving single-crystal-grade mobility values in CQDSs.
近年来,动态核极化(DNP)增强固态NMR光谱已被证明是一种强大的技术,用于表征具有挑战性的固体材料及其界面。通过DNP,可以大大提高NMR实验的灵敏度,其中未成对电子自旋的大极化被转移到所需的原子核。对于被不成对电子源(称为极化剂)包围的无机纳米颗粒(NP),极化转移主要是到它们的表面。因此,除了增加的灵敏度之外,还实现了表面选择性,并且这可以用于研究NP的表面化学。已经提出用无机配体(IL)而不是常规的有机配体封端NP以改善由NP组装体组成的固体(通常称为胶体量子点固体(CQDS))中的电荷载流子寿命。传输特性和方法多样性的大幅增加使得研究人员探索许多类型的IL以提高电荷载流子的迁移率。然而,获得对IL-封端的NP的表面化学的详细理解仍然是一项具有挑战性的任务,因此仍然缺乏。该项目旨在将配体封端的CQDS的表面化学和界面与其性能相关联。IL-封端的NP的表面表征将通过先进的DNP增强的固态NMR光谱进行。光致发光和电导率测量将表明组装CQDS中电荷载流子寿命的影响。因此,拟议的研究将导致突破性的原子级理解IL的选择和表面化学如何影响电荷传输,并将导致一个通用的方法,实现单晶级迁移率值的CQDS。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ran Abutbul其他文献
Ran Abutbul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Collaborative R&D
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006484/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006468/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006433/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006492/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006530/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006425/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006409/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006417/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006441/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant














{{item.name}}会员




