NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
基本信息
- 批准号:EP/Y027531/1
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Patterns of animal colouration, biological tissues, vegetation patterns and the formation of crystals, as well as spatio-temporalpatterns such as travelling (water) waves, (laser) pulses and (electrical) spikes have captivated researchers in various fields of science for many decades. Project NEWWAVE puts forward a unique and unprecedented approach to studying such patterns in discrete, spatially-extended and delay-coupled systems of excitable and bistable units, which play an important role for neural signal propagation. Such systems can be obtained, for example, from discretisation of an underlying partial differential equation model, from the discreteness of the measured data, or from the microstructure of the medium. They can also be obtained bottom-up, from studying the response of single active unit to its neighbourhood, and large systems of coupled units are gaining more and more attention through the emergence of complex systems science and network science. The specific proposed research involves overcoming considerable mathematical and numerical challenges associated with time delays of mixed-type that appear when either (A) taking into account the finite speed of communication between discrete loci, or (B) imposing a TW ansatz (co-moving coordinates) on a discrete system. The projected results promise significant potential for innovating the bifurcation (qualitative changes) analysis of TWs in discrete systems and will advance our understanding of their dynamic repertoire through new analytical and numerical means, and by making the developed methods available as an open source library as part of the project. The techniques will be used to elucidate the functional role of travelling waves in the brain and, more specifically, the role of TWs in Parkinson's disease together with project collaborators in Neuroscience.
几十年来,动物着色、生物组织、植被模式和晶体形成的模式,以及行波(水)波、(激光)脉冲和(电)尖峰等时空模式吸引了不同科学领域的研究人员。NewWave项目提出了一种独特的、史无前例的方法来研究离散的、空间扩展的和延迟耦合的可激发和双稳单元系统中的这种模式,这些系统对神经信号的传播起着重要的作用。例如,可以通过对基本偏微分方程模型的离散化、从测量数据的离散性或从介质的微观结构来获得这样的系统。从研究单个活动单元对其邻域的响应也可以自下而上地获得,随着复杂系统科学和网络科学的出现,耦合单元大系统正受到越来越多的关注。拟议的具体研究涉及克服与混合类型的时延相关的相当大的数学和数值挑战,当(A)考虑离散轨迹之间的有限通信速度时,或(B)在离散系统上施加TW ansatz(共同移动坐标)时。预测的结果为创新离散系统中TW的分叉(质变)分析提供了巨大的潜力,并将通过新的分析和数值手段促进我们对其动态规律的理解,并使开发的方法作为项目的一部分作为开源库提供。这些技术将被用于阐明行波在大脑中的功能作用,更具体地说,将与神经科学的项目合作者一起阐明行波在帕金森病中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alastair Rucklidge其他文献
Quasiperiodic tiling and density wave pictures in hexagonal quasicrystals
六方准晶体中的准周期平铺和密度波图像
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Tomonari Dotera;Kota Morimoto;Andrew Archer;Alastair Rucklidge - 通讯作者:
Alastair Rucklidge
Alastair Rucklidge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alastair Rucklidge', 18)}}的其他基金
Quasicrystals: how and why do they form?
准晶体:它们如何以及为何形成?
- 批准号:
EP/P015611/1 - 财政年份:2017
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
Resonances in heteroclinic networks
异宿网络中的共振
- 批准号:
EP/G052603/1 - 财政年份:2009
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
相似海外基金
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Continuing Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Continuing Grant
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
- 批准号:
EP/Z000335/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
- 批准号:
2327484 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Standard Grant
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
- 批准号:
24K17694 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New methods in network economics to study environment-friendly behaviours
网络经济学研究环境友好行为的新方法
- 批准号:
DP240100158 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Discovery Projects
New methods to capture protein dynamics of the TSC-mTOR signalling axis.
捕获 TSC-mTOR 信号轴蛋白质动态的新方法。
- 批准号:
DE240100992 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Discovery Early Career Researcher Award
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Fellowship
New calibration standards and methods for radiometry and photometry after phaseout of incandescent lamps
淘汰白炽灯后辐射测量和光度测量的新校准标准和方法
- 批准号:
10086156 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
EU-Funded
Elucidation of the onset mechanism of dysphagia in basal ganglia disease and development of new treatment methods
阐明基底神经节疾病吞咽困难的发病机制并开发新的治疗方法
- 批准号:
23K09284 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)