SPDEQFT: Stochastic PDEs meet QFT: Large deviations, Uhlenbeck compactness, and Yang-Mills
SPDEQFT:随机 PDE 满足 QFT:大偏差、Uhlenbeck 紧致性和 Yang-Mills
基本信息
- 批准号:EP/Y028090/1
- 负责人:
- 金额:$ 23.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The overarching goal of this proposal is (a) to develop novel tools in the field of stochastic partial differential equations (SPDEs) and (b) to apply them to mathematical quantum field theory (QFT), particularly quantum Yang-Mills (YM) theory. The YM measure in the physical 4D space-time describes how elementary particles interact at the subatomic level. Its rigorous mathematical construction, however, has so far eluded substantial progress, and accordingly made the list of famously difficult "Millenium problems." On the other hand, SPDE theory has witnessed a number of recent breakthroughs, notably Hairer's theory of regularity structures, which has allowed to make sense of previously ill-posed, singular equations. This proposal aims to develop new tools in SPDEs and regularity structures to analyse the 2D YM measure. The research programme is structured into three projects: 1. We develop a solution theory for singular non-linear elliptic SPDEs. This significantly extends the scope of equations Hairer's theory allows to treat. At the same time, it provides the right framework to extend Uhlenbeck's compactness theorem to distributions. We use that generalisation to give a new gauge-fixed construction of the 2D YM measure, both on the optimal regularity space and with the natural gauge-invariant observables (Wilson loops) well-defined. 2. We show that singular (elliptic and parabolic) SPDEs can be analysed using classical Kusuoka-Stroock theory. This contributes to our theoretical understanding of regularity structures and, in particular, allows to derive precise Laplace asymptotics for these equations. 3. We prove precise Laplace asymptotics of the 2D YM measure in the low temperature limit. This is a novel insight into its qualitative behaviour and generalises a previous large deviation result, which has been obtained by completely different methods.
该提案的总体目标是:(a)在随机偏微分方程(SPDE)领域开发新的工具;(B)将其应用于数学量子场论(QFT),特别是量子Yang-Mills(YM)理论。物理4D时空中的YM测度描述了基本粒子如何在亚原子水平上相互作用。然而,它严格的数学构造迄今为止还没有取得实质性的进展,因此被列入了著名的“千年难题”名单。另一方面,SPDE理论最近取得了一些突破,特别是Hairer的正则性结构理论,它使以前不适定的奇异方程变得有意义。该建议旨在开发SPDE和规则性结构中的新工具来分析2D YM措施。该研究计划分为三个项目:1。我们发展了奇异非线性椭圆型随机微分方程的解理论。这大大扩展了Hairer理论所能处理的方程的范围,同时,它也为将Uhlenbeck紧性定理扩展到分布提供了正确的框架。我们使用的推广给一个新的规范固定建设的二维YM措施,无论是在最佳的正则性空间和自然规范不变的可观测量(威尔逊循环)定义良好。2.我们发现,奇异(椭圆和抛物)SPDE可以使用经典Kusuoka-Stroock理论进行分析。这有助于我们的理论理解的规律性结构,特别是,可以得到精确的拉普拉斯渐近这些方程。3.我们证明了精确的拉普拉斯渐近的二维YM措施在低温限制。这是对其定性行为的新见解,并概括了之前通过完全不同的方法获得的大偏差结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tom Klose其他文献
Gaussian Rough Paths Lifts via Complementary Young Regularity
高斯粗糙路径通过互补年轻正则性提升
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Paul Gassiat;Tom Klose - 通讯作者:
Tom Klose
Tom Klose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
- 批准号:
2309626 - 财政年份:2023
- 资助金额:
$ 23.84万 - 项目类别:
Continuing Grant
Dynamics of singular stochastic nonlinear dispersive PDEs
奇异随机非线性色散偏微分方程的动力学
- 批准号:
EP/V003178/1 - 财政年份:2021
- 资助金额:
$ 23.84万 - 项目类别:
Research Grant
Stochastic PDEs, interacting particle systems and large deviations
随机偏微分方程、相互作用的粒子系统和大偏差
- 批准号:
2592873 - 财政年份:2020
- 资助金额:
$ 23.84万 - 项目类别:
Studentship
Different kinds of Parisi-Wu equations(parabolic or Schroedinger stochastic quantisation equations); Wave and dispersive PDEs; PKS equations; Cattaneo
不同类型的Parisi-Wu方程(抛物线或薛定谔随机量化方程);
- 批准号:
2438500 - 财政年份:2020
- 资助金额:
$ 23.84万 - 项目类别:
Studentship
Stochastic dynamics for singularly perturbed PDEs with fractional Brownian motions
具有分数布朗运动的奇扰动偏微分方程的随机动力学
- 批准号:
18F18314 - 财政年份:2018
- 资助金额:
$ 23.84万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The emergence of universal behaviour for growth models, stochastic PDEs and random operators.
增长模型、随机偏微分方程和随机算子的通用行为的出现。
- 批准号:
EP/S012524/1 - 财政年份:2018
- 资助金额:
$ 23.84万 - 项目类别:
Fellowship
Singular stochastic PDEs and related statistical physics models
奇异随机偏微分方程和相关统计物理模型
- 批准号:
EP/N021568/2 - 财政年份:2018
- 资助金额:
$ 23.84万 - 项目类别:
Fellowship
Stability of deterministic and stochastic nonlinear PDEs of parabolic type with degeneracies
具有简并性的抛物线型确定性和随机非线性偏微分方程的稳定性
- 批准号:
334362478 - 财政年份:2017
- 资助金额:
$ 23.84万 - 项目类别:
Research Grants
Analysis of quantum turbulence by stochastic PDEs
用随机偏微分方程分析量子湍流
- 批准号:
16KT0127 - 财政年份:2016
- 资助金额:
$ 23.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singular stochastic PDEs and related statistical physics models
奇异随机偏微分方程和相关统计物理模型
- 批准号:
EP/N021568/1 - 财政年份:2016
- 资助金额:
$ 23.84万 - 项目类别:
Fellowship