ProbAI: A Hub for the Mathematical and Computational Foundations of Probabilistic AI
ProbAI:概率人工智能的数学和计算基础中心
基本信息
- 批准号:EP/Y028783/1
- 负责人:
- 金额:$ 1092.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Probabilistic AI involves the embedding of probability models, probabilistic reasoning and measures of uncertainty within AI methods. The ProbAI hub will develop a world leading, diverse and UK-wide research programme in probabilistic AI, that will develop the next generation of mathematically-rigorous, scalable and uncertainty-aware AI algorithms. It will have far-reaching impact across many aspects of AI, including:(1) The sudden and rapid growth of AI systems has led to a new impetus for businesses, governments and creators of AI tools to understand and convey the inherent uncertainties in their systems. A probabilistic approach to AI provides a framework to represent and manipulate uncertainty about models and predictions and already plays a central role in scientific data analysis, robotics and cognitive science. The consequential impact arising from from such developments has the potential to be wide-ranging and substantial: from utilising a probabilistic approach for effective resource allocation (healthcare), prioritisation of actions (infrastructure planning), pattern recognition (cyber security) and the development of robust strategies to mitigate risks (finance).(2) It is possible to gain important theoretical insights into AI models and algorithms through studying their, often probabilistic, limiting behaviour in different asymptotic scenarios. Such results can help with understanding why AI methods work, and how best to choose appropriate architectures - with the potential to substantially reduce the computational cost and carbon footprint of AI.(3) Recent breakthroughs in generative models are based on simulating stochastic processes. There is huge potential to both use these ideas to help develop efficient and scalable probabilistic AI methods more generally; and also to improve and extend current generative models. The latter may lead to more computationally efficient and robust methods, to generative models that use different stochastic processes and are suitable for different types of data, or to novel approaches that can give a level of certainty to the output of a generative model. (4) Models from AI are increasingly being used as emulators. For example, fitting a deep neural network to realisations of a complex computer model for the weather, can lead to more efficient approaches to forecasting the weather. However, in most applications for such methods to be used reliably requires that the emulators report a measure of uncertainty -- so the user can know when the output can be trusted. Also, building on recent generalisations of Bayes updates gives new approaches to incorporate known physical constraints and other structure into these neural network emulators, leading to more robust methods that generalise better outside the training sampler and that have fewer parameters and are easier to fit.Developing these new, practical, general-purpose probabilistic AI methods requires overcoming substantial challenges, and at their heart many of these challenges are mathematical. The hub will unify a fragmented community with interests in Probabilistic AI and bring together UK researchers across the breadth of Applied Mathematics, Computer Science, Probability and Statistics. The hub will promote the area of probabilistic AI widely, encouraging and facilitating cross-disciplinary mathematics research in AI, and has substantial flexibility to fund the involvement of researchers from across the breadth of the UK during its lifetime.ProbAI will draw on and benefit from the well-established world-leading strength in areas relevant to probabilistic AI across different areas of Mathematics and Computer Science, with the aim of making the UK the world-leader in probabilistic AI.
ProbabilityAI涉及在AI方法中嵌入概率模型,概率推理和不确定性度量。ProbAI中心将开发一个世界领先的,多样化的,英国范围内的概率AI研究计划,该计划将开发下一代严格,可扩展和不确定性感知的AI算法。它将对人工智能的许多方面产生深远的影响,包括:(1)人工智能系统的突然和快速增长为企业,政府和人工智能工具的创造者带来了新的动力,以理解和传达其系统中固有的不确定性。人工智能的概率方法提供了一个框架来表示和操纵模型和预测的不确定性,并且已经在科学数据分析,机器人和认知科学中发挥了核心作用。这些发展所产生的后续影响可能是广泛和实质性的:从利用概率方法进行有效的资源分配(医疗保健),优先行动(基础设施规划),模式识别(网络安全)以及制定稳健的战略来减轻风险(金融)。(2)通过研究人工智能模型和算法在不同渐近场景下的极限行为(通常是概率性的),可以获得对它们的重要理论见解。这些结果可以帮助理解为什么人工智能方法有效,以及如何最好地选择合适的架构-有可能大幅降低人工智能的计算成本和碳足迹。(3)生成模型的最新突破是基于模拟随机过程。利用这些想法来帮助更普遍地开发高效和可扩展的概率AI方法,以及改进和扩展当前的生成模型,都有巨大的潜力。后者可能会导致更有效的计算和强大的方法,生成模型,使用不同的随机过程,并适合于不同类型的数据,或新的方法,可以给一定程度的确定性生成模型的输出。(4)人工智能的模型越来越多地被用作仿真器。例如,将深度神经网络拟合到复杂的天气计算机模型的实现中,可以带来更有效的天气预测方法。然而,在大多数应用程序中,要想可靠地使用这种方法,需要仿真器报告一个不确定性的度量--这样用户就可以知道什么时候输出是可信的。此外,基于最近对贝叶斯更新的概括,提供了新的方法来将已知的物理约束和其他结构纳入这些神经网络仿真器,从而产生更强大的方法,这些方法在训练采样器之外更好地概括,参数更少,更容易拟合。开发这些新的,实用的,通用的概率AI方法需要克服重大挑战,这些挑战的核心是数学。该中心将统一一个分散的社区,对概率论AI感兴趣,并将应用数学,计算机科学,概率论和统计学领域的英国研究人员聚集在一起。该中心将广泛推广概率人工智能领域,鼓励和促进人工智能领域的跨学科数学研究,并具有相当大的灵活性,在其生命周期内资助来自英国各地的研究人员参与。ProbAI将借鉴并受益于数学和计算机科学不同领域的概率人工智能相关领域的成熟世界领先优势,目的是让英国成为概率人工智能的世界领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Fearnhead其他文献
Perfect simulation from population genetic models with selection.
通过选择对群体遗传模型进行完美模拟。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:1.4
- 作者:
Paul Fearnhead - 通讯作者:
Paul Fearnhead
Filtering recursions for calculating likelihoods for queues based on inter-departure time data
- DOI:
10.1023/b:stco.0000035305.92337.80 - 发表时间:
2004-08-01 - 期刊:
- 影响因子:1.600
- 作者:
Paul Fearnhead - 通讯作者:
Paul Fearnhead
Computational methods for complex stochastic systems: a review of some alternatives to MCMC
- DOI:
10.1007/s11222-007-9045-8 - 发表时间:
2007-11-29 - 期刊:
- 影响因子:1.600
- 作者:
Paul Fearnhead - 通讯作者:
Paul Fearnhead
Paul Fearnhead的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Fearnhead', 18)}}的其他基金
Was that change real? Quantifying uncertainty for change points
这种变化是真实的吗?
- 批准号:
EP/V053590/1 - 财政年份:2021
- 资助金额:
$ 1092.86万 - 项目类别:
Research Grant
New Approaches to Bayesian Data Science: Tackling Challenges from the Health Sciences
贝叶斯数据科学的新方法:应对健康科学的挑战
- 批准号:
EP/R018561/1 - 财政年份:2018
- 资助金额:
$ 1092.86万 - 项目类别:
Research Grant
Inference for Diffusions and Related Processes
扩散推理及相关过程
- 批准号:
EP/G028745/1 - 财政年份:2009
- 资助金额:
$ 1092.86万 - 项目类别:
Research Grant
相似国自然基金
Hub结构的大样本观测研究
- 批准号:12373029
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
HuB调节炎症因子翻译起始的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
细胞衰老过程中HuR与HuB/D对端粒酶活性的竞争性调控作用
- 批准号:82071577
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
Free PAR通过ARE结合蛋白HuB参与基因表达调控的作用机制研究
- 批准号:31801182
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
基于三维结构和复杂网络的Hub蛋白质的功能研究
- 批准号:61502356
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于VMI-Hub的装配系统协同补货决策模型与方法研究
- 批准号:71471057
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
前列腺增生雄激素通路hub基因(SOX9-AR-NFKB1)的miRNA调控网络研究
- 批准号:81200550
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
不确定条件下基于Supply-Hub的装配系统协同补货策略研究
- 批准号:71102174
- 批准年份:2011
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于Supply-Hub的供应物流协同的理论与方法研究
- 批准号:71072035
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 1092.86万 - 项目类别:
Operating Grants
Data Science Course Hub: ボトムアップアプローチによるデータサイエンス教育の改善
数据科学课程中心:通过自下而上的方法改进数据科学教育
- 批准号:
24K15234 - 财政年份:2024
- 资助金额:
$ 1092.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The South Wales and South West England Mental Health Platform Hub
南威尔士和英格兰西南部心理健康平台中心
- 批准号:
MR/Z503745/1 - 财政年份:2024
- 资助金额:
$ 1092.86万 - 项目类别:
Research Grant
Preventing Plastic Pollution with Engineering Biology (P3EB) Mission Hub
利用工程生物学 (P3EB) 任务中心预防塑料污染
- 批准号:
BB/Y007972/1 - 财政年份:2024
- 资助金额:
$ 1092.86万 - 项目类别:
Research Grant
GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
- 批准号:
BB/Y008472/1 - 财政年份:2024
- 资助金额:
$ 1092.86万 - 项目类别:
Research Grant
EvaluATE: The Evaluation Hub for Advanced Technological Education
EvaluATE:先进技术教育评估中心
- 批准号:
2332143 - 财政年份:2024
- 资助金额:
$ 1092.86万 - 项目类别:
Standard Grant
The Making of a University Hub for Basic Cultural Anthropological Research Related to Cultural and Biodiversity Conservation
建立与文化和生物多样性保护相关的基础文化人类学研究大学中心
- 批准号:
2309069 - 财政年份:2024
- 资助金额:
$ 1092.86万 - 项目类别:
Standard Grant
Understanding and Supporting the Whole Student: An NSF S-STEM-NET Hub
了解并支持全体学生:NSF S-STEM-NET 中心
- 批准号:
2326042 - 财政年份:2024
- 资助金额:
$ 1092.86万 - 项目类别:
Continuing Grant
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 1092.86万 - 项目类别:
Operating Grants