BREAST CANCER PATIENT SURVIVAL PREDICTION--A NEURAL NETWORK APPROACH
乳腺癌患者的生存预测——神经网络方法
基本信息
- 批准号:3774961
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In FY91 we reported preliminary experiences in developing a back-error
propagation Artificial Neural Network (ANN) to predict survival with a
small (170 cases) breast cancer database using as explanatory covariates
tumor size, number of positive lymph nodes, histologic grade, and estrogen
and progesterone receptor status. We concluded that individual patient
survival curves could be computed and that bootstrapping methods could be
used to compute survival confidence intervals with larger databases.
Progress in FY92 included a comparison of the Cox regression model with an
ANN approach to survival analysis, leading to the conclusion that an ANN
approach would not be constrained by the proportional hazards assumption of
the Cox model, thus suggesting factors for which predictive associations
are not yet known.
A collaboration was begun with Dr. Donald Henson (NCI), present chairman of
the American Joint Committee on Cancer (AJCC). Dr. Henson and the AJCC are
very interested in the application of appropriate computing methodologies
to prognostic factors for evaluation and use in patient outcome prediction
and management.
A program was written for computing group actuarial survival functions
based on the assumption of equal interval hazard rates for censored and
non-censored events.
Studies were conducted with data extracted from the NCI Surveillance,
Epidemiology, End Results (SEER) program. A 6,000-case melanoma database
was used to demonstrate basic concepts in ANN survival prediction. The
back-error propagation ANN developed last year was refined and applied to
a 44,000-case breast cancer database to demonstrate ANN survival prediction
based on multi-explanatory factors.
Presentations of methods and results were made at the AJCC annual Meeting
in January 1992 in San Diego and before the AJCC Task Force on Multiple
Prognostic Factors in Chicago in June 1992.
在91财年,我们报告了开发反向误差的初步经验
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J M DELEO其他文献
J M DELEO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J M DELEO', 18)}}的其他基金
BREAST CANCER PATIENT SURVIVAL PREDICTION--A NEURAL NETWORK APPROACH
乳腺癌患者的生存预测——神经网络方法
- 批准号:
3838534 - 财政年份:
- 资助金额:
-- - 项目类别:
BREAST CANCER PATIENT SURVIVAL PREDICTION--A NEURAL NETWORK APPROACH
乳腺癌患者的生存预测——神经网络方法
- 批准号:
3853632 - 财政年份:
- 资助金额:
-- - 项目类别:
AUDITORY BRAINSTEM RESPONSE (ABR) ANALYSIS AND INTERPRETATION EXPERT SYSTEM
听觉脑干反应(ABR)分析和解释专家系统
- 批准号:
3874836 - 财政年份:
- 资助金额:
-- - 项目类别:
COMPUTER ASSISTED PATIENT INTERVIEWING IN CLINICAL PHARMACY
临床药学中计算机辅助患者会诊
- 批准号:
3874835 - 财政年份:
- 资助金额:
-- - 项目类别:
COMPUTER ASSISTED PATIENT INTERVIEWING IN CLINICAL PHARMACY
临床药学中计算机辅助患者会诊
- 批准号:
3774960 - 财政年份:
- 资助金额:
-- - 项目类别:
COMPUTER ASSISTED PATIENT INTERVIEWING IN CLINICAL PHARMACY
临床药学中计算机辅助患者会诊
- 批准号:
3838530 - 财政年份:
- 资助金额:
-- - 项目类别:
COMPUTER ASSISTED PATIENT INTERVIEWING IN CLINICAL PHARMACY
临床药学中计算机辅助患者会诊
- 批准号:
3853628 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
HYPERMEDIA INTELLIGENT BREAST CANCER INFORMATION SYSTEM
超媒体智能乳腺癌信息系统
- 批准号:
2104339 - 财政年份:1994
- 资助金额:
-- - 项目类别:














{{item.name}}会员




