Strategic Network: Data and Cities as Complex Adaptive Systems (DACAS)

战略网络:数据和城市作为复杂的自适应系统(DACAS)

基本信息

  • 批准号:
    ES/N009436/1
  • 负责人:
  • 金额:
    $ 12.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Urbanisation has been declared a planetary condition. Cities and urban processes have moved to the core of research agendas across several academic disciplines and interdisciplinary fields. New analytical frameworks and practical tools are needed to model, understand and manage urban transformations. Yet despite the increasing availability of urban (big) data and methods of analysis with the potential to allow an evidence-based understanding of socio-spatial change in different geographical contexts, current approaches fail to understand cities as complex adaptive systems. Although smart cities are seen as offering solutions to pressing global challenges, mainstream strategies do not yet offer an in-depth understanding of correlations and causalities between different urban systems and fail to address the links between 'soft' (economic, ecological and social) and 'hard' (engineered) systems. However, the ability to link and model different kinds of urban data and systems is indispensable for a holistic understanding of cities as complex adaptive systems and will be agenda-setting for future urban research and practice. The proposed international Strategic Network Data and Cities as Complex Adaptive Systems (DACAS) aims to promote a decisively interdisciplinary approach to understanding urban processes and transformations through (big) urban data using a complexity science framework. The Strategic Network has three objectives which are closely aligned with the Government's Department for Business, Innovation & Skills (a) smart cities and (b) development assistance strategies in the following ways:(a) DACAS will bring together noted academics with backgrounds in the social and natural sciences, including architects, engineers, physicists, geographers, mathematicians and ecological economists. Network activities will clarify and calibrate common interdisciplinary terminology using a complexity science framework. Relevant urban systems data will be identified; data sources, structures and methods of acquisition will be compared and methods of data analysis will be tested through cross-case analysis of soft and hard urban data sets (Obj1). Network activities will establish if and how data can be used to link hard and soft urban systems. Modelling techniques will be compared and linked across disciplines and innovative protocols will be established to identify cause-effect relationships in large complex (urban) data sets (Obj2). Network activities will facilitate the development of practical tools and innovative technological applications to exploit (big) urban data, reflect urban complexity and aid urban policy-making and practice (Obj3). (b) DACAS researchers will be based in Japan and the UK as well as Newton countries Brazil and China. Three events and one summer school (targeting specifically PhD and Early Career Researchers) will link academics with user communities from the public, private and third sectors. Two of these events will be hosted by our partners in Brazil and China. In view of global environmental and economic crises where the pressures of urbanisation are expanding, DACAS has the potential to make a real impact in academic, policy and practice circles through multiple deliverables. Alongside academic papers produced by individual Network members, DACAS will publish a synthesis article in an internationally renowned journal. In addition to a dedicated website and a series of contributions to popular magazines and web blogs, DACAS will produce synthesis reports for researchers and practitioners and a UNU Policy Report/Policy Brief for policy makers. At the Manchester School of Architecture, students of Architecture will benefit directly from DACAS activities through the digital research-based MArch atelier Complexity, Planning and Urbanism (CPU). Funding proposals for interdisciplinary research will be developed to ensure continued DACAS activities post-award (e.g. RCUK, ERC H2020, Belmont Forum).
城市化已被宣布为一种全球性的状况。城市和城市进程已经成为多个学科和跨学科领域研究议程的核心。需要新的分析框架和实用工具来模拟、理解和管理城市转型。然而,尽管城市(大)数据和分析方法的可用性越来越高,有可能使人们对不同地理背景下的社会空间变化有一个基于证据的理解,但目前的方法无法将城市理解为复杂的适应系统。虽然智慧城市被视为为紧迫的全球挑战提供解决方案,但主流战略尚未深入了解不同城市系统之间的相关性和因果关系,未能解决“软”(经济,生态和社会)和“硬”(工程)系统之间的联系。然而,链接和模拟不同类型的城市数据和系统的能力是不可或缺的城市作为一个复杂的适应系统的整体理解,并将为未来的城市研究和实践奠定基础。拟议的国际战略网络数据和城市复杂适应系统(DACAS)旨在促进一种决定性的跨学科方法,通过使用复杂性科学框架的(大)城市数据来理解城市进程和转型。该战略网络有三个目标,与政府的商业、创新和技能部(a)智慧城市和(B)发展援助战略密切一致,具体方式如下:(a)DACAS将汇集具有社会和自然科学背景的著名学者,包括建筑师、工程师、物理学家、地理学家、数学家和生态经济学家。网络活动将使用复杂性科学框架澄清和校准共同的跨学科术语。将确定相关的城市系统数据;将比较数据来源、结构和获取方法,并通过对城市软硬数据集的跨案例分析来测试数据分析方法(目标1)。网络活动将确定是否以及如何利用数据将城市硬系统和软系统联系起来。将对建模技术进行比较并将其与各学科联系起来,并将制定创新协议,以确定大型复杂(城市)数据集中的因果关系(目标2)。网络活动将促进开发实用工具和创新技术应用,以利用(大)城市数据,反映城市复杂性,并协助城市决策和实践(目标3)。(b)DACAS的研究人员将驻扎在日本和英国以及牛顿国家巴西和中国。三个活动和一个暑期学校(专门针对博士和早期职业研究人员)将学者与来自公共,私营和第三部门的用户社区联系起来。其中两项活动将由我们在巴西和中国的合作伙伴主办。鉴于全球环境和经济危机,城市化的压力正在扩大,DACAS有可能通过多种交付成果在学术,政策和实践界产生真实的影响。除了网络成员撰写的学术论文外,DACAS还将在国际知名期刊上发表一篇综合文章。除了一个专门的网站和一系列对流行杂志和网络博客的贡献外,该中心还将为研究人员和从业人员编写综合报告,并为决策者编写联合国大学政策报告/政策简报。在曼彻斯特建筑学院,建筑专业的学生将通过基于数字研究的MArch工作室复杂性,规划和城市化(CPU)直接从DACAS活动中受益。将制定跨学科研究的资助提案,以确保授予后继续DACAS活动(例如RCUK,ERC H2020,贝尔蒙特论坛)。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sustainable Smart Cities: Applying Complexity Science to Achieve Urban Sustainability
可持续智慧城市:应用复杂性科学实现城市可持续发展
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sengupta U
  • 通讯作者:
    Sengupta U
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deljana Iossifova其他文献

Living with fragile infrastructure: The gendered labour of preventing, responding to and being impacted by sanitation failures
与脆弱的基础设施共存:预防、应对卫生设施故障并受到其影响的性别劳动
  • DOI:
    10.1016/j.geoforum.2023.103724
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Cecilia Alda;M. Lawhon;Deljana Iossifova;A. Browne
  • 通讯作者:
    A. Browne
SEARCHING FOR COMMON GROUND: URBAN BORDERLANDS IN A WORLD OF BORDERS AND BOUNDARIES
  • DOI:
    10.1016/j.cities.2013.01.006
  • 发表时间:
    2013-10
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Deljana Iossifova
  • 通讯作者:
    Deljana Iossifova
Collective discussion ferocious architecture : sovereign spaces/places by design
集体讨论凶猛的建筑:主权空间/地方的设计
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin J Muller;Thomas N. Cooke;Miguel de Larrinaga;Philippe M. Frowd;Deljana Iossifova;Daniela Johannes;Can E. Mutlu;A. Nowek
  • 通讯作者:
    A. Nowek
Blurring the joint line? Urban life on the edge between old and new in Shanghai
  • DOI:
    10.1057/udi.2008.9
  • 发表时间:
    2009-06
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Deljana Iossifova
  • 通讯作者:
    Deljana Iossifova
Dislocating ‘Ageing in Place’: From Multi-local to Transnational
  • DOI:
    10.1007/978-3-030-60823-1_4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Deljana Iossifova
  • 通讯作者:
    Deljana Iossifova

Deljana Iossifova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deljana Iossifova', 18)}}的其他基金

A Systems Approach to Sustainable Sanitation Challenges in Urbanising China (SASSI)
应对中国城市化进程中可持续卫生挑战的系统方法 (SASSI)
  • 批准号:
    NE/S012354/1
  • 财政年份:
    2019
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Research Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
  • 批准号:
    2346718
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
Decentralizing Trust in Data-Centric In-Network Computing using Collaborative Secure Computation
使用协作安全计算分散对以数据为中心的网络内计算的信任
  • 批准号:
    24K20769
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
  • 批准号:
    2403360
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
Research Coordination Network (RCN) for Privacy Preserving Data Sharing and Analytics
用于隐私保护数据共享和分析的研究协调网络 (RCN)
  • 批准号:
    2413978
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
  • 批准号:
    2327862
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Continuing Grant
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infrastructure and Services - The UK Health Data Research Alliance and Hub Network
基础设施和服务 - 英国健康数据研究联盟和中心网络
  • 批准号:
    HDR-23001
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Intramural
Network Canvas 2.0: Enhancing network data capture for drug use and HIV research
Network Canvas 2.0:增强药物使用和艾滋病毒研究的网络数据捕获
  • 批准号:
    10715902
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了