Business and Local Government Data Research Centre

商业和地方政府数据研究中心

基本信息

  • 批准号:
    ES/S007156/1
  • 负责人:
  • 金额:
    $ 155.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

An ambition to be the world's most innovative economy is set out in the UK Government Industrial Strategy. Local authorities and businesses possess large amounts of data covering every aspect of their daily activities. While this resource is valuable, the opportunity for transformative change in business models in public and private sectors comes from adopting data science and artificial intelligence techniques and embedding them as an analytical layer in every stage of decision making. Transforming data to knowledge with the help of advanced analytics can provide local authorities and businesses additional information which can help them to design better policies and improve their business operations.The Business and Local Government Data Research Centre (BLG DRC) aims to enable a step change in the way public sector organisations and businesses make use of and harness the power of their data through advanced analytics. As such, BLG DRC will coalesce a number of research strands in social sciences, data science and AI within University of Essex and will provide the synergetic scope required to make significant new breakthroughs in social sciences and methodological research. The primary stakeholders of BLG DRC will continue to be local authorities and businesses, but we will expand our remit of work and collaborations to the wider public sector as well as internationally.BLG DRC's mission places stakeholders and users at its heart, and the research programme of work will be user-driven and involve an ethos of co-creation with external partners and stakeholders. The comprehensive integrated outreach programme which consists of training and knowledge exchange activities will ensure an ongoing dialogue with the users and stakeholders of the research and project partners including policy makers and that the project outputs will have lasting impact beyond the life of the Centre. In particular, focusing on the public sector and working with our regional partners, Essex County Council (ECC), Essex Police (EP), Essex Partnership University NHS Foundation Trust (EPUT) and others, BLG DRC will serve as a joined up, system-wide public sector AI and data science hub where the focus of the work will be on improving lives and generating efficiency in public services through embedding of novel data science techniques and AI. We have also partnered with businesses who wish to understand how we can foster and support economic growth, particularly for small and medium enterprises and start-ups. We aim to explore the barriers these businesses face and how data science and AI can help us understand the best means of overcoming these. The overall programme of work is divided into two strands which are strongly interlinked: (i) developing new research and interdisciplinary capacity, and (ii) delivering and further expanding our integrated outreach programme. The programme has been designed to maximise the impact of both existing activity and also engage in new research that will have direct and significant impact at the regional and national level. Our users and stakeholders will continue to play a key role in shaping up the programme of work on the one hand benefitting from the research and integrated outreach programme while on the other directly feeding in challenges and problems with respect to socio-economic research and the development of new methods needed to address these problems so that the take-up of our work can be maximised. Building on our successful substantive socio-economic programme of research and methodological research stream, we aim to further develop and undertake new research in three core areas: (i) Support for Vulnerable People; (ii) Supporting Economic Growth; (iii) Methodologies and Techniques for Data Science and AI. The new phase of BLG DRC promises to be an exciting development that will not only advance knowledge but also benefit our community.
英国政府产业战略中提出了成为世界上最具创新力经济体的雄心。地方当局和企业拥有涵盖其日常活动各个方面的大量数据。虽然这一资源很有价值,但公共和私营部门商业模式变革的机会来自采用数据科学和人工智能技术,并将其作为分析层嵌入决策的每个阶段。借助先进的分析技术将数据转化为知识,可以为地方政府和企业提供更多信息,帮助他们设计更好的政策,改善业务运营。商业和地方政府数据研究中心(BLG DRC)旨在通过先进的分析技术,使公共部门组织和企业利用和利用数据的方式发生重大变化。因此,BLG DRC将整合埃塞克斯大学社会科学、数据科学和人工智能领域的多个研究领域,并将提供在社会科学和方法论研究中取得重大新突破所需的协同范围。BLG DRC的主要利益相关者将继续是地方当局和企业,但我们将扩大我们的工作和合作范围,以更广泛的公共部门以及国际。BLG DRC的使命将利益相关者和用户放在其核心位置,研究工作计划将以用户为导向,并涉及与外部合作伙伴和利益相关者共同创造的精神。由培训和知识交流活动组成的全面综合外联方案将确保与研究和项目伙伴的用户和利益攸关方(包括决策者)进行持续对话,并确保项目产出在中心存在之后产生持久影响。特别是,专注于公共部门,并与我们的区域合作伙伴,埃塞克斯县理事会(ECC),埃塞克斯警察(EP),埃塞克斯伙伴关系大学NHS基金会信托(EPUT)等合作,BLG DRC将作为一个联合起来,系统,系统广泛的公共部门人工智能和数据科学中心,其工作重点将是通过嵌入新的数据科学来改善生活和提高公共服务的效率技术和AI。我们还与希望了解我们如何促进和支持经济增长的企业合作,特别是中小型企业和初创企业。我们的目标是探索这些企业面临的障碍,以及数据科学和人工智能如何帮助我们了解克服这些障碍的最佳方法。总体工作方案分为两个密切相关的部分:㈠发展新的研究和跨学科能力; ㈡执行和进一步扩大我们的综合外联方案。该计划旨在最大限度地发挥现有活动的影响,并参与将在区域和国家一级产生直接和重大影响的新研究。我们的用户和利益攸关方将继续在制定工作计划方面发挥关键作用,一方面受益于研究和综合推广计划,另一方面直接提供社会经济研究方面的挑战和问题,并开发解决这些问题所需的新方法,以便最大限度地开展我们的工作。在我们成功的实质性社会经济研究计划和方法研究流的基础上,我们的目标是在三个核心领域进一步开发和开展新的研究:(i)支持弱势群体;(ii)支持经济增长;(iii)数据科学和人工智能的方法和技术。BLG DRC的新阶段有望成为一个令人兴奋的发展,不仅将促进知识,而且有利于我们的社区。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probabilistic Named Entity Recognition for nonstandard format entities using cooccurrence word embeddings
使用共现词嵌入对非标准格式实体进行概率命名实体识别
  • DOI:
    10.1109/bigdata47090.2019.9005587
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    AlAni J
  • 通讯作者:
    AlAni J
Special issue on "Learning in data science: theory, methods and applications"-preface by the guest editors
《数据科学学习:理论、方法与应用》特刊——客座编辑序言
Causal Inference with Correlation Alignment
具有相关性对齐的因果推理
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abdullahi, U.
  • 通讯作者:
    Abdullahi, U.
Foreign Direct Investment and Knowledge Diffusion in Poor Locations
贫困地区的外国直接投资和知识传播
  • DOI:
    10.3386/w24461
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abebe G
  • 通讯作者:
    Abebe G
The Selection and Tenure of Foreign Ministers Around the World
世界各国外交部长的选任和任期
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Back
  • 通讯作者:
    Back
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Fasli其他文献

Exploring Trading Strategies and their Effects in the FX Market
探索交易策略及其对外汇市场的影响
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Aloud;Maria Fasli
  • 通讯作者:
    Maria Fasli
Exploring Trading Strategies and Their Effects in the Foreign Exchange Market
探索外汇市场的交易策略及其影响
  • DOI:
    10.1111/coin.12085
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    M. Aloud;Maria Fasli
  • 通讯作者:
    Maria Fasli
Formal Systems and Agent-Based Social Simulation Equals Null?
正式系统和基于代理的社会模拟等于零?
e-Game: A platform for developing auction-based market simulations
电子游戏:开发基于拍卖的市场模拟的平台
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Maria Fasli;Michael Michalakopoulos
  • 通讯作者:
    Michael Michalakopoulos
Stylized facts of trading activity in the high frequency FX market : An Empirical Study
高频外汇市场交易活动的典型事实:实证研究
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Aloud;Maria Fasli;E. Tsang;A. Dupuis;R. Olsen
  • 通讯作者:
    R. Olsen

Maria Fasli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria Fasli', 18)}}的其他基金

Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
  • 批准号:
    ES/Y003411/1
  • 财政年份:
    2024
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Research Grant
Utilising Big Data in the Practice of Torture Survivors' Rehabilitation
大数据在酷刑幸存者康复实践中的应用
  • 批准号:
    ES/M010422/1
  • 财政年份:
    2015
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Research Grant
DADO - Data Analytics Driven by Ontologies
DADO - 由本体驱动的数据分析
  • 批准号:
    EP/M507702/1
  • 财政年份:
    2014
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Research Grant
Innovative tools to enable exploration of complex and specialised data sets
支持探索复杂且专业的数据集的创新工具
  • 批准号:
    EP/M507106/1
  • 财政年份:
    2014
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Research Grant
Smart Data Analytics for Business and Local Government
企业和地方政府的智能数据分析
  • 批准号:
    ES/L011859/1
  • 财政年份:
    2014
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Research Grant

相似国自然基金

具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
  • 批准号:
    11872210
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
  • 批准号:
    81601936
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
  • 批准号:
    ES/Y003411/1
  • 财政年份:
    2024
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Research Grant
DDRIG in DRMS: An assessment of local government dam management action and inaction for risk reduction
DRMS 中的 DDRIG:对地方政府大坝管理行动和减少风险不作为的评估
  • 批准号:
    2241946
  • 财政年份:
    2023
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Standard Grant
Local Government Model for the management of administrative documents: Building up for Records Appraisal for Kumamoto Prefecture
地方政府行政文件管理模式:熊本县档案鉴定建设
  • 批准号:
    23H03692
  • 财政年份:
    2023
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Regional Joint System of Child-Rearing Education: A Study of Comprehensive Local Government Policies with Horizontal Cooperation and Vertical Consistency
区域育儿教育联动体系:横向合作、纵向一致的地方政府综合政策研究
  • 批准号:
    23K02097
  • 财政年份:
    2023
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Empirical Study on R&D Performance of Chinese Firms: Local Government Industrial Policy and ESG Management Perspective
R的实证研究
  • 批准号:
    23K11567
  • 财政年份:
    2023
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UAM4Gov - Closing the AAM/UAM skills gap for members of city and local government
UAM4Gov - 缩小城市和地方政府成员的 AAM/UAM 技能差距
  • 批准号:
    10067950
  • 财政年份:
    2023
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Collaborative R&D
The use of nudges as a local government environmental policy instrument
使用助推作为地方政府的环境政策工具
  • 批准号:
    LP220100291
  • 财政年份:
    2023
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Linkage Projects
Indian Smart Cities: rescaling and digitising local government in India
印度智慧城市:印度地方政府的规模调整和数字化
  • 批准号:
    ES/Y010396/1
  • 财政年份:
    2023
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Fellowship
Collaborative Research: Local Government Officials and the Management of Religion-State Relationships
合作研究:地方政府官员与宗教与国家关系的管理
  • 批准号:
    2148556
  • 财政年份:
    2022
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Standard Grant
Enhancing local government greener procurement processes through carbon data
通过碳数据加强地方政府的绿色采购流程
  • 批准号:
    10045799
  • 财政年份:
    2022
  • 资助金额:
    $ 155.52万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了