Genetic dissection of synaptic growth in Drosophila

果蝇突触生长的遗传解剖

基本信息

  • 批准号:
    G0802208/2
  • 负责人:
  • 金额:
    $ 22.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

The body is made up of discrete individual structures known as cells which need to communicate with one another for proper function. In the brain this need for communication between cells is highly specialised and regulated. Without this high degree of specialisation complex tasks such as learning and memory, facial recognition and the perception of emotions would not exist. In the brain, individual cells are called neurones and the specialised structures that mediate communication between them, are synapses. The synaptic contacts between neuronal cells are not generally hard wired but constantly adapt to inputs from the environment. This adaptation is known as synaptic plasticity. Plastic changes in synapses occur on several levels ranging from molecular changes (the individual proteins found in cells) to morphological changes (those that alter cell shape). In order for morphological changes to persist there needs to be a rearrangement of the actin cytoskeleton which provides physical structure to cells. At a molecular level, some of the signals which act as transducers of changes in the cell?s environment are secreted from one cell and are internalised (or endocytosed) by a neighbouring cell. In this manner cell to cell signalling is achieved. Morphological changes in neurons and initial stages of endocytosis involve a deformation of lipid membranes. Thus proteins that can both deform lipids and interact with the actin cytoskeleton are likely to have key roles in regulating both synaptic architecture and function. Proteins having these attributes are the focus of this application. One goal of the application is to determine how proteins form a bridge between the lipid membranes that surround cells and the actin cytoskeleton that maintains the shape of cells and to define how these proteins regulate synaptic transmission through morphological changes. A second goal of the application is to define the molecular pathway that is needed for signal transduction to maintain synaptic contacts in the brain. In neurodegenerative diseases the strength of contact between nerve cells (the synapses) is often affected and understanding which molecules are needed to establish and maintain these contacts in normal cells is important to be able to interpret the alterations in signalling that occur in diseased cells. Loss of these connections leads to deficiencies in learning and memory, facial recognition and the ability to perceive and convey emotions; these symptoms accompany many neurodegenerative diseases. Neurodegenerative diseases are becoming more prevalent in aging populations.
身体是由被称为细胞的离散的个体结构组成的,它们需要相互沟通才能正常工作。在大脑中,细胞之间的这种交流需要是高度特化和调节的。如果没有这种高度的专业化,学习和记忆、面部识别和情绪感知等复杂任务就不会存在。在大脑中,单个细胞被称为神经元,而介导它们之间交流的特殊结构被称为突触。神经元细胞之间的突触接触通常不是硬连接的,而是不断地适应来自环境的输入。这种适应被称为突触可塑性。突触的可塑性变化发生在几个层面上,从分子变化(细胞中发现的单个蛋白质)到形态变化(改变细胞形状的变化)。为了使形态变化持续存在,需要对肌动蛋白细胞骨架进行重排,肌动蛋白细胞骨架为细胞提供物理结构。在分子水平上,一些信号作为细胞变化的换能器?S环境从一个细胞分泌,并由邻近细胞内化(或内吞)。通过这种方式,细胞间的信号传递得以实现。神经元的形态改变和内吞作用的初始阶段涉及脂质膜的变形。因此,既能使脂质变形又能与肌动蛋白细胞骨架相互作用的蛋白质很可能在调节突触结构和功能方面发挥关键作用。具有这些属性的蛋白质是本应用程序的重点。该应用程序的一个目标是确定蛋白质如何在围绕细胞的脂质膜和维持细胞形状的肌动蛋白细胞骨架之间形成桥梁,并确定这些蛋白质如何通过形态变化调节突触传递。该应用程序的第二个目标是确定维持大脑突触接触所需的信号转导分子途径。在神经退行性疾病中,神经细胞(突触)之间的联系强度经常受到影响,了解在正常细胞中需要哪些分子来建立和维持这些联系,对于能够解释病变细胞中发生的信号改变非常重要。失去这些连接会导致学习和记忆、面部识别以及感知和传达情绪的能力不足;这些症状伴随着许多神经退行性疾病。神经退行性疾病在老年人中越来越普遍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iain Robinson其他文献

The Field Spectroscopy Facility Post Processing Toolbox User Guide: Post processing spectral data in MATLAB
现场光谱设施后处理工具箱用户指南:在 MATLAB 中后处理光谱数据
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iain Robinson;A. MacArthur
  • 通讯作者:
    A. MacArthur
A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases
用于温室气体差分吸收激光雷达的强大光学参量振荡器和接收望远镜
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iain Robinson;J. Jack;C. Rae;J. Moncrieff
  • 通讯作者:
    J. Moncrieff
A critique of field spectroscopy and the challenges and opportunities it presents for remote sensing for agriculture, ecosystems, and hydrology
对野外光谱学的批评及其为农业、生态系统和水文学遥感带来的挑战和机遇
  • DOI:
    10.1117/12.2201046
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Arthur;Iain Robinson
  • 通讯作者:
    Iain Robinson

Iain Robinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iain Robinson', 18)}}的其他基金

Genetic dissection of synaptic growth in Drosophila
果蝇突触生长的遗传解剖
  • 批准号:
    G0802208/1
  • 财政年份:
    2009
  • 资助金额:
    $ 22.83万
  • 项目类别:
    Research Grant

相似海外基金

Towards a better understanding of genetic architecture of Alzheimer's disease with human iPSC models
利用人类 iPSC 模型更好地了解阿尔茨海默病的遗传结构
  • 批准号:
    10402828
  • 财政年份:
    2020
  • 资助金额:
    $ 22.83万
  • 项目类别:
Towards a better understanding of genetic architecture of Alzheimer's disease with human iPSC models
利用人类 iPSC 模型更好地了解阿尔茨海默病的遗传结构
  • 批准号:
    10621928
  • 财政年份:
    2020
  • 资助金额:
    $ 22.83万
  • 项目类别:
Towards a better understanding of genetic architecture of Alzheimer's disease with human iPSC models
利用人类 iPSC 模型更好地了解阿尔茨海默病的遗传结构
  • 批准号:
    10231253
  • 财政年份:
    2020
  • 资助金额:
    $ 22.83万
  • 项目类别:
GENETIC DISSECTION OF BRAINSTEM CIRCUITS AND THEIR ROLE IN PERSISTENT INFLAMMATORY PAIN
脑干回路的基因解剖及其在持续性炎症性疼痛中的作用
  • 批准号:
    9470677
  • 财政年份:
    2017
  • 资助金额:
    $ 22.83万
  • 项目类别:
Genetic and Optic Dissection of AMPK Dynamics in Neurotransmission
神经传递中 AMPK 动力学的遗传和光学解剖
  • 批准号:
    9165641
  • 财政年份:
    2016
  • 资助金额:
    $ 22.83万
  • 项目类别:
Genetic dissection of neural pathways for appetitive associative learning
食欲联想学习神经通路的遗传解剖
  • 批准号:
    8976537
  • 财政年份:
    2015
  • 资助金额:
    $ 22.83万
  • 项目类别:
Genetic dissection of neural pathways for appetitive associative learning
食欲联想学习神经通路的遗传解剖
  • 批准号:
    9066127
  • 财政年份:
    2015
  • 资助金额:
    $ 22.83万
  • 项目类别:
Genetic and physiological dissection of the circuit mechanisms in the striatum.
纹状体回路机制的遗传和生理解剖。
  • 批准号:
    10019598
  • 财政年份:
    2013
  • 资助金额:
    $ 22.83万
  • 项目类别:
Genetic and physiological dissection of the circuit mechanisms in the striatum.
纹状体回路机制的遗传和生理解剖。
  • 批准号:
    10189709
  • 财政年份:
    2013
  • 资助金额:
    $ 22.83万
  • 项目类别:
Genetic and physiological dissection of the circuit mechanisms in the striatum.
纹状体回路机制的遗传和生理解剖。
  • 批准号:
    10661686
  • 财政年份:
    2013
  • 资助金额:
    $ 22.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了