Cortical microcircuiltry after traumatic brain injury: molecules to networks

创伤性脑损伤后的皮质微循环:分子到网络

基本信息

  • 批准号:
    MC_PC_16036
  • 负责人:
  • 金额:
    $ 19.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Intramural
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Traffic accidents, accidental falls and violent attacks may result in the damage to a person’s brain: the ability to move, feel, speak, form memories and judgments can be lost at once. Repairing this damage is often beyond our current therapeutic abilities. Nerve cells become disconnected following the impact and parts of the brain become unable to communicate with each other. Yet some cells manage to establish new contacts and some level of recovery can arise although it is never complete. Which nerve cells are important for recovery? What happens to those disconnected cells, and why some do some succeed and others fail at making new connections? Are memories, movements, and feelings lost beyond repair, or can we restore lost functions? We have to answer these questions to improve the condition of those patients for whom there are few treatment options. In this project, we will use the most advanced technologies available for visualizing how and when nerve cells lose connections after trauma and regain the ability to communicate with each other. We will develop new methods, bringing together scientists from computer science, medicine and biology to understand which nerve cells need to be stimulated for recovery to happen. Then, we will look for ways to promote such recovery. We will screen for drugs that have a positive regenerative effect on damaged neural cells and can therefore be used in the treatment of traumatic brain injuries. We will also study new ways to predict how successful the recovery will be. Our long-term goal is to funnel all this information into a coherent rehabilitation program aimed at severely impaired patients and help them to regain integrity of brain and mind.
交通事故、意外的福尔斯和暴力袭击可能会导致大脑受损:移动、感觉、说话、形成记忆和判断的能力可能会立即丧失。修复这种损伤往往超出了我们目前的治疗能力。神经细胞在撞击后断开连接,大脑的某些部分无法相互交流。然而,一些细胞设法建立新的联系,并可能出现某种程度的恢复,尽管它永远不会完成。哪些神经细胞对恢复很重要?这些断开的细胞会发生什么?为什么有些细胞成功地建立了新的连接,而另一些细胞却失败了?是记忆、运动和感觉失去了无法修复,还是我们可以恢复失去的功能?我们必须回答这些问题,以改善那些几乎没有治疗选择的患者的状况。在这个项目中,我们将使用最先进的技术来可视化神经细胞在创伤后如何以及何时失去连接并重新获得相互交流的能力。我们将开发新的方法,将计算机科学,医学和生物学的科学家聚集在一起,了解哪些神经细胞需要刺激才能恢复。然后,我们将寻找促进这种复苏的方法。我们将筛选对受损神经细胞有积极再生作用的药物,因此可以用于治疗创伤性脑损伤。我们还将研究新的方法来预测复苏的成功程度。我们的长期目标是将所有这些信息汇集到针对严重受损患者的连贯康复计划中,帮助他们恢复大脑和心灵的完整性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output
气液界面的大脑类器官产生具有功能输出的不同神经束
  • DOI:
    10.1101/353151
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giandomenico S
  • 通讯作者:
    Giandomenico S
Looking at Synaptic Specificity from a Different Angle.
从不同的角度看待突触特异性。
  • DOI:
    10.1016/j.neuron.2019.05.046
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    16.2
  • 作者:
    Mariotti L
  • 通讯作者:
    Mariotti L
Relaxin/insulin-like family peptide receptor 4 (Rxfp4) expressing hypothalamic neurons modulate food intake and preference in mice
  • DOI:
    10.1101/2021.06.26.450020
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jo E. Lewis;Orla R. M. Woodward;Danaé Nuzzaci;Christopher A. Smith;Alice E. Adriaenssens;Lawrence J. Billing;Cheryl A. Brighton;Benjamin U Phillips;J. Tadross;S. Kinston;E. Ciabatti;B. Göttgens;Marco Tripodi;D. Hornigold;David Baker;F. Gribble;F. Reimann
  • 通讯作者:
    Jo E. Lewis;Orla R. M. Woodward;Danaé Nuzzaci;Christopher A. Smith;Alice E. Adriaenssens;Lawrence J. Billing;Cheryl A. Brighton;Benjamin U Phillips;J. Tadross;S. Kinston;E. Ciabatti;B. Göttgens;Marco Tripodi;D. Hornigold;David Baker;F. Gribble;F. Reimann
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Tripodi其他文献

Correction to: Nanomedicine for autophagy modulation in cancer therapy: a clinical perspective
  • DOI:
    10.1186/s13578-023-01057-9
  • 发表时间:
    2023-06-09
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Tania B. López-Méndez;Miguel Sánchez-Álvarez;Flavia Trionfetti;José L Pedraz;Marco Tripodi;Marco Cordani;Raffaele Strippoli;Juan González-Valdivieso
  • 通讯作者:
    Juan González-Valdivieso
Transgenic models for Hepatitis C virus pathogenesis
丙型肝炎病毒发病机制的转基因模型
Disruption of the LF‐A1 and LF‐B1 binding sites in the human alpha‐1‐antitrypsin gene has a differential effect during development in transgenic mice.
人类 α-1-抗胰蛋白酶基因中 LF-A1 和 LF-B1 结合位点的破坏在转基因小鼠的发育过程中会产生不同的影响。
  • DOI:
    10.1002/j.1460-2075.1991.tb04879.x
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marco Tripodi;Catherine M. Abbott;N. Vivian;Riccardo Cortese;Robin Lovell
  • 通讯作者:
    Robin Lovell
Oxidation affects the regulation of hepatic lipid synthesis by chylomicron remnants.
氧化影响乳糜微粒残余物对肝脂质合成的调节。
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    M. Napolitano;R. Rivabene;M. Avella;L. Amicone;Marco Tripodi;K. Botham;E. Bravo
  • 通讯作者:
    E. Bravo
Éloge de la Fuite: Neural Circuits for Avoiding Dangerous Situations
  • DOI:
    10.1016/j.tins.2019.07.006
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ana González-Rueda;Marco Tripodi
  • 通讯作者:
    Marco Tripodi

Marco Tripodi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Tripodi', 18)}}的其他基金

The space of actions - Neural circuits for transforming spatial representations into actions
动作空间 - 将空间表征转化为动作的神经回路
  • 批准号:
    EP/X034666/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了