Identification and investigation of novel candidate genes for primary ciliary dyskinesia
原发性纤毛运动障碍新候选基因的鉴定和研究
基本信息
- 批准号:MR/K018558/1
- 负责人:
- 金额:$ 50.87万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Almost every cell of your body has a thin, hair-like outgrowth called a cilium. Cilia can be thought of as the "cells' antennae", through which the cell gains sensory information about its environment. As such, the cilium performs sensory functions essential to the development and physiology of many organs, including kidney, nervous system, sense organs, bone and pancreas. In addition to their sensory functions, some types of cilia are capable of bending or beating and are involved in fluid movement. Such 'motile cilia' are found for example on cells lining the airways for mucus movement and the fallopian tubes for wafting a new egg towards the uterus. Moreover, sperm cells swim by means of a beating flagellum, which is essentially a long motile cilium. All these cilia move by means of banks of 'motor proteins' within them. Primary ciliary dyskinesia is an inherited disease in which cilia are immotile or only partially motile due to failure of these motor proteins. It is quite rare overall, but in some communities it can occur at a frequency of up to 1:2200 individuals. Most noticeable symptoms relate to difficulties in clearing mucus, leading for instance to frequent and damaging chest infections. Severe cases also have situs inversus - in which organ positioning is disrupted (e.g. the heart is no longer on the left side of the chest). If diagnosed early, then treatment can be effective (such as physiotherapy to clear lungs), but diagnosis is difficult and requires specialist techniques. Discovering the genetic causes of PCD will ultimately aid understanding of the disease, aid diagnosis, and potentially provide a route to therapy.Mutations in many different genes cause PCD. Some mutations are in genes for the motor proteins themselves. However, in some 50-60% of PCD families the underlying gene defect has not been discovered. The question we are addressing is how to accelerate the discovery of PCD-causing gene mutations. Our strategy, unexpectedly, is to look at the fruit fly, Drosophila melanogaster. The fruit fly is easy to rear and to study. Sophisticated genetic and cellular approaches can be used to discover genes that are required for motile cilia in Drosophila. We shall examine the effect of disrupting the function of these genes. This is quite straightforward to achieve because in Drosophila, motile cilia are required for senses and sperm, and so flies with defective motile cilia are easy to spot through obvious sensory deficits and male infertility. For studies into cilium biology it is cost-effective and ethically more acceptable to use Drosophila than more complex organisms where possible. Our research therefore helps to satisfy the goal of reducing reliance on animal research. Ease of gene discovery and analysis is not sufficient. Just as important is the fact that the molecular machinery of the cilium is completely conserved between insects and 'higher' animals. Therefore, genes discovered to be important for ciliary motility in Drosophila are likely to be important in humans too. As a corollary, the genes we discover in Drosophila are prime suspects to be mutated in cases of PCD. So, even though the fruit fly doesn't have lungs, it provides a perhaps surprising route to discovering the genetic causes of PCD.On the basis of the evidence we obtain in Drosophila, our collaborators will screen for mutations of newly identified genes in a panel of PCD families. If gene variants are found in such families, they would be hypothesised to cause the PCD in those families. But this conclusion would require further experimental verification before it becomes proof. Some of this verification will come from further analysis of the mutant defects in Drosophila using a range of molecular and cellular techniques, in order to define what exactly is going wrong with the motile cilia.
几乎你身体的每一个细胞都有一个薄的,头发状的生长物,称为纤毛。纤毛可以被认为是“细胞的触角”,通过它细胞获得关于其环境的感觉信息。因此,纤毛执行对许多器官(包括肾脏、神经系统、感觉器官、骨骼和胰腺)的发育和生理学至关重要的感觉功能。除了它们的感觉功能,某些类型的纤毛能够弯曲或跳动,并参与流体运动。例如,这种“运动纤毛”存在于气道细胞中,用于粘液运动,以及输卵管细胞中,用于将新的卵子运送到子宫。此外,精子通过一根跳动的鞭毛游动,鞭毛本质上是一根长的能动纤毛。所有这些纤毛都是通过它们内部的“运动蛋白”库来运动的。原发性纤毛运动障碍是一种遗传性疾病,其中由于这些运动蛋白的失效,纤毛是不运动的或仅部分运动的。总体而言,它是相当罕见的,但在一些社区,它可以发生在高达1:2200个人的频率。最明显的症状与清除粘液的困难有关,例如导致频繁和破坏性的胸部感染。严重的病例还会出现内脏逆位-器官定位被破坏(例如心脏不再位于胸部左侧)。如果早期诊断,那么治疗可能是有效的(如物理治疗以清除肺部),但诊断是困难的,需要专业技术。发现PCD的遗传原因将最终帮助理解疾病,帮助诊断,并可能提供治疗途径。许多不同基因的突变导致PCD。有些突变发生在马达蛋白本身的基因中。然而,在大约50-60%的PCD家族中,尚未发现潜在的基因缺陷。我们正在解决的问题是如何加速发现导致PCD的基因突变。出乎意料的是,我们的策略是观察果蝇,黑腹果蝇。果蝇易于饲养和研究。复杂的遗传和细胞方法可以用来发现果蝇运动纤毛所需的基因。我们将研究破坏这些基因功能的影响。这很容易实现,因为在果蝇中,运动纤毛是感官和精子所必需的,因此运动纤毛有缺陷的果蝇很容易通过明显的感官缺陷和雄性不育症被发现。对于纤毛生物学的研究来说,在可能的情况下,使用果蝇比使用更复杂的生物更具成本效益,在伦理上更容易接受。因此,我们的研究有助于实现减少对动物研究依赖的目标。基因发现和分析的容易性是不够的。同样重要的是,纤毛的分子机制在昆虫和“高等”动物之间是完全保守的。因此,在果蝇中发现的对纤毛运动重要的基因可能在人类中也很重要。作为一个推论,我们在果蝇中发现的基因是PCD病例中发生突变的主要嫌疑人。因此,尽管果蝇没有肺,但它为发现PCD的遗传原因提供了一条可能令人惊讶的途径。基于我们在果蝇中获得的证据,我们的合作者将在一组PCD家族中筛选新发现的基因突变。如果在这些家族中发现基因变异,则假设它们导致这些家族中的PCD。但这一结论在成为证据之前还需要进一步的实验验证。其中一些验证将来自使用一系列分子和细胞技术对果蝇中突变缺陷的进一步分析,以确定运动纤毛到底出了什么问题。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
HEATR2 plays a conserved role in assembly of the ciliary motile apparatus.
- DOI:10.1371/journal.pgen.1004577
- 发表时间:2014-09
- 期刊:
- 影响因子:4.5
- 作者:Diggle CP;Moore DJ;Mali G;zur Lage P;Ait-Lounis A;Schmidts M;Shoemark A;Garcia Munoz A;Halachev MR;Gautier P;Yeyati PL;Bonthron DT;Carr IM;Hayward B;Markham AF;Hope JE;von Kriegsheim A;Mitchison HM;Jackson IJ;Durand B;Reith W;Sheridan E;Jarman AP;Mill P
- 通讯作者:Mill P
Acute versus chronic loss of mammalian Azi1/Cep131 results in distinct ciliary phenotypes.
- DOI:10.1371/journal.pgen.1003928
- 发表时间:2013
- 期刊:
- 影响因子:4.5
- 作者:Hall EA;Keighren M;Ford MJ;Davey T;Jarman AP;Smith LB;Jackson IJ;Mill P
- 通讯作者:Mill P
Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP.
- DOI:10.1083/jcb.201709026
- 发表时间:2018-07-02
- 期刊:
- 影响因子:0
- 作者:Zur Lage P;Stefanopoulou P;Styczynska-Soczka K;Quinn N;Mali G;von Kriegsheim A;Mill P;Jarman AP
- 通讯作者:Jarman AP
ZMYND10 functions in a chaperone relay during axonemal dynein assembly.
- DOI:10.7554/elife.34389
- 发表时间:2018-06-19
- 期刊:
- 影响因子:7.7
- 作者:Mali GR;Yeyati PL;Mizuno S;Dodd DO;Tennant PA;Keighren MA;Zur Lage P;Shoemark A;Garcia-Munoz A;Shimada A;Takeda H;Edlich F;Takahashi S;von Kreigsheim A;Jarman AP;Mill P
- 通讯作者:Mill P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Jarman其他文献
16-P004 Microarray analysis of sensory neurogenesis in the <em>Drosophila</em> embryo reveals an enrichment of genes involved in cilia biogenesis
- DOI:
10.1016/j.mod.2009.06.695 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Petra zur Lage;Sebastian Cachero;Ian Simpson;Lina Ma;Fay Newton;Andrew Jarman - 通讯作者:
Andrew Jarman
09-P021 Atonal regulates <em>Rfx</em> during chordotonal organ development in the <em>Drosophila</em>
- DOI:
10.1016/j.mod.2009.06.351 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Lina Ma;Andrew Jarman - 通讯作者:
Andrew Jarman
09-P058 The role of the forkhead gene fd3F in <em>Drosophila</em> chordotonal neuron development
- DOI:
10.1016/j.mod.2009.06.388 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Fay Newton;Andrew Jarman - 通讯作者:
Andrew Jarman
Andrew Jarman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Jarman', 18)}}的其他基金
Building a molecular machine: analysis of co-chaperones for assembly of ciliary dynein motor complexes
构建分子机器:分析用于组装纤毛动力蛋白运动复合体的共伴侣
- 批准号:
BB/S000801/1 - 财政年份:2018
- 资助金额:
$ 50.87万 - 项目类别:
Research Grant
Transcription factors for promoting sensory hair cell differentiation
促进感觉毛细胞分化的转录因子
- 批准号:
MR/L021099/1 - 财政年份:2014
- 资助金额:
$ 50.87万 - 项目类别:
Research Grant
Systems Approach to Biological Research Studentship
生物研究学生资助的系统方法
- 批准号:
BB/H531878/1 - 财政年份:2010
- 资助金额:
$ 50.87万 - 项目类别:
Training Grant
相似海外基金
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 50.87万 - 项目类别:
Virtual systemic identification of drug targets of obesity candidate genes
肥胖候选基因药物靶点的虚拟系统识别
- 批准号:
10639818 - 财政年份:2023
- 资助金额:
$ 50.87万 - 项目类别:
Comprehensive identification of E3 ubiquitin ligases that degrade heart, lung, and blood-relevant transcription factors
全面鉴定可降解心脏、肺和血液相关转录因子的 E3 泛素连接酶
- 批准号:
10677457 - 财政年份:2023
- 资助金额:
$ 50.87万 - 项目类别:
Identification of components and mechanisms regulating expanded CUG-repeat RNP complexes in Myotonic Dystrophy Type 1 muscle cells
强直性肌营养不良 1 型肌细胞中调节扩展 CUG 重复 RNP 复合物的成分和机制的鉴定
- 批准号:
10667708 - 财政年份:2023
- 资助金额:
$ 50.87万 - 项目类别:
Towards the identification of a mesoscale neural systems logic underlying innate behaviors
识别先天行为背后的中尺度神经系统逻辑
- 批准号:
10734660 - 财政年份:2023
- 资助金额:
$ 50.87万 - 项目类别:
Identification of the antigenic targets of the clonal antibody response to Clostridioides difficile infection
鉴定针对艰难梭菌感染的克隆抗体反应的抗原靶点
- 批准号:
10742376 - 财政年份:2023
- 资助金额:
$ 50.87万 - 项目类别:
Development and validation of a novel point-of-care technology for rapid non-targeted identification of emerging opioid and other drug threats
开发和验证一种新型即时护理技术,用于快速非靶向识别新出现的阿片类药物和其他药物威胁
- 批准号:
10775250 - 财政年份:2023
- 资助金额:
$ 50.87万 - 项目类别:
Identification of regulatory mechanisms operating in rare pathogenic astrocyte subsets in multiple sclerosis with a novel genomic technology
利用新型基因组技术鉴定多发性硬化症中罕见致病性星形胶质细胞亚群的调节机制
- 批准号:
10737509 - 财政年份:2023
- 资助金额:
$ 50.87万 - 项目类别:
Identification of new components of the Toll receptor signaling pathway in Drosophila
果蝇Toll受体信号通路新成分的鉴定
- 批准号:
10360133 - 财政年份:2022
- 资助金额:
$ 50.87万 - 项目类别:
Identification of therapeutic targets in clonal hematopoiesis
克隆造血治疗靶点的鉴定
- 批准号:
10528774 - 财政年份:2022
- 资助金额:
$ 50.87万 - 项目类别: