Measuring Brain Network Dynamics Using Magnetoencephalography: Methods Development and Applications in Schizophrenia
使用脑磁图测量大脑网络动态:精神分裂症的方法开发和应用
基本信息
- 批准号:MR/M006301/1
- 负责人:
- 金额:$ 62.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The human brain can be divided into multiple regions which are responsible for different aspects of behaviour and healthy brain function relies upon efficient communication between those regions. For example a region in the left brain controls the right hand and a region in the right brain controls the left hand, these two regions must communicate when we coordinate both hands to undertake a task. In recent years, neuroscience has been revolutionised by measurement of this communication, which is termed 'connectivity'. We now know that multiple regions join together to form 'networks'. Furthermore, multiple different networks exist, some associated with basic function (e.g. movement) and others supporting high level aspects of behaviour (e.g. attention). It is clear is that connectivity is key to healthy brain function. Moreover, it is abnormal in a variety of disorders including childhood conditions (e.g. ADHD), severe mental disorders (e.g. schizophrenia) and brain degeneration (e.g. Parkinson's disease). If we are to develop successful treatments for such conditions then developing an understanding of brain networks is critical.Our principal means to examine networks is a technique called fMRI, which measures changes in blood flow. When activity in some brain region increases, an increased amount of energy is required; this necessitates an increase in blood flow. Measurement of changes in blood flow thus generates pictures of brain activity. However, the brain itself operates based on electrical currents; indeed it is these currents that allow communication between brain areas. Blood flow based measurements cannot directly measure these currents. Further, blood flow measures lack temporal precision because when a brain area becomes active, it takes around 6 seconds for the blood flow change to occur. This means that deriving a means to assess electrical activity in networks directly would represent a major advance. MEG is a brain imaging technique which can assess electrical brain activity: All electrical currents, including those in the brain, generate magnetic fields. MEG detects the magnetic fields outside the head generated by electrical current in the brain, and uses the fields to build a picture of electrical brain activity. MEG is non-invasive, and a MEG scanner forms an environment that is well tolerated by patients. Recently, we have shown that the brain networks usually examined by fMRI can also be seen in MEG. This opens up opportunities to provide a fundamentally new way to measure and understand brain networks.In this grant I aim to realise the unique potential of MEG to examine networks. I will introduce novel ways to measure the activity within brain regions. I will then use this to develop new ways to measure communication between those regions. I will test how electrical signals in the brain mediate communication within and between the networks that have previously only been seen with fMRI. By assessing electrical activity (rather than blood flow) I will be able to examine multiple different kinds of connection. Further, my methods will allow us to probe how connectivity changes in time; e.g. how might a network change when an individual undertakes a mental task? All electrical brain activity is underpinned by chemicals known as neurotransmitters. Using parallel experiments in a technique called MRS, I will test how the electrical connectivities measured in MEG are related to the amount of different kinds of neurotransmitter in the brain. Most importantly, these techniques will provide unique insights into how connectivity breaks down in diseases. Schizophrenia is a poorly understood condition with high socio-economic costs. A prevailing theory on the mechanisms of schizophrenia involves breakdown of communication between the back and the front of the brain. Using MEG and MRS to investigate this will enable new insights that will have great impact on how this highly debilitating disorder is treated.
人类大脑可以分为多个区域,负责行为的不同方面,健康的大脑功能依赖于这些区域之间的有效沟通。例如,左脑的一个区域控制右手,右脑的一个区域控制左手,当我们协调双手执行任务时,这两个区域必须进行通信。近年来,通过测量这种被称为“连通性”的通信,神经科学发生了革命性的变化。我们现在知道,多个区域连接在一起形成“网络”。此外,存在多个不同的网络,一些与基本功能(例如运动)相关联,而另一些支持行为的高级方面(例如注意力)。很明显,连通性是健康大脑功能的关键。此外,它在多种疾病中是异常的,包括儿童病症(例如ADHD)、严重精神障碍(例如精神分裂症)和脑变性(例如帕金森病)。如果我们想成功地治疗这些疾病,那么对大脑网络的理解就至关重要。我们检查网络的主要手段是一种叫做功能性磁共振成像的技术,它测量血液流动的变化。当大脑某些区域的活动增加时,需要增加的能量;这就需要增加血流量。因此,测量血流的变化就可以得到大脑活动的图像。然而,大脑本身是基于电流运行的;事实上,正是这些电流使大脑区域之间能够进行通信。基于血流的测量不能直接测量这些电流。此外,血流测量缺乏时间精度,因为当大脑区域变得活跃时,血流变化发生大约需要6秒。这意味着,获得一种直接评估网络中电活动的方法将是一个重大进步。MEG是一种大脑成像技术,可以评估大脑电活动:所有电流,包括大脑中的电流,都会产生磁场。脑磁图检测大脑中电流产生的头部外部磁场,并使用这些磁场来构建大脑电活动的图像。MEG是非侵入性的,并且MEG扫描仪形成患者耐受良好的环境。最近,我们已经表明,通常由功能磁共振成像检查的大脑网络也可以在脑磁图中看到。这为测量和理解大脑网络提供了一种全新的方法。在这项资助中,我的目标是实现MEG在检查网络方面的独特潜力。我将介绍新的方法来测量大脑区域内的活动。然后,我将利用这一点来开发新的方法来衡量这些地区之间的沟通。我将测试大脑中的电信号是如何调节网络内部和网络之间的通信的,这些通信以前只能用功能性磁共振成像来观察。通过评估电活动(而不是血流),我将能够检查多种不同类型的连接。此外,我的方法将使我们能够探索连接性如何随时间变化;例如,当一个人承担一项心理任务时,网络可能会发生什么变化?所有的脑电活动都是由一种叫做神经递质的化学物质支撑的。使用一种称为MRS的技术中的平行实验,我将测试MEG中测量的电连通性如何与大脑中不同种类的神经递质的数量相关。最重要的是,这些技术将为疾病中的连接性如何破坏提供独特的见解。精神分裂症是一种人们知之甚少的疾病,其社会经济成本很高。关于精神分裂症的机制,一个流行的理论涉及到大脑后部和前部之间的交流中断。使用MEG和MRS来调查这一点将使新的见解,这将对如何治疗这种高度衰弱的疾病产生重大影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A mean field model for movement induced changes in the beta rhythm.
- DOI:10.1007/s10827-017-0655-7
- 发表时间:2017-10
- 期刊:
- 影响因子:1.2
- 作者:Byrne Á;Brookes MJ;Coombes S
- 通讯作者:Coombes S
A multi-layer network approach to MEG connectivity analysis.
- DOI:10.1016/j.neuroimage.2016.02.045
- 发表时间:2016-05-15
- 期刊:
- 影响因子:5.7
- 作者:Brookes MJ;Tewarie PK;Hunt BAE;Robson SE;Gascoyne LE;Liddle EB;Liddle PF;Morris PG
- 通讯作者:Morris PG
On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study.
- DOI:10.1371/journal.pone.0157655
- 发表时间:2016
- 期刊:
- 影响因子:3.7
- 作者:Boto E;Bowtell R;Krüger P;Fromhold TM;Morris PG;Meyer SS;Barnes GR;Brookes MJ
- 通讯作者:Brookes MJ
Abnormal task driven neural oscillations in multiple sclerosis: A visuomotor MEG study.
- DOI:10.1002/hbm.23531
- 发表时间:2017-05
- 期刊:
- 影响因子:4.8
- 作者:Barratt EL;Tewarie PK;Clarke MA;Hall EL;Gowland PA;Morris PG;Francis ST;Evangelou N;Brookes MJ
- 通讯作者:Brookes MJ
Resting state MEG oscillations show long-range temporal correlations of phase synchrony that break down during finger movement.
- DOI:10.3389/fphys.2015.00183
- 发表时间:2015
- 期刊:
- 影响因子:4
- 作者:Botcharova M;Berthouze L;Brookes MJ;Barnes GR;Farmer SF
- 通讯作者:Farmer SF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Brookes其他文献
Coherency properties for monoids of transformations and partitions
变换和划分的幺半群的一致性属性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Matthew Brookes;Victoria Gould;N. Ruškuc - 通讯作者:
N. Ruškuc
VARIATION IN POST ENDOSCOPY UPPER GASTROINTESTINAL CANCER AMONG ENDOSCOPY PROVIDERS IN ENGLAND AND ASSOCIATED FACTORS: A POPULATION BASED STUDY
英格兰内镜医师之间内镜检查后上消化道癌变异及相关因素:一项基于人群的研究
- DOI:
10.1016/j.gie.2023.04.425 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:7.500
- 作者:
Umair Kamran;Felicity Evison;Matthew Brookes;Matthew Rutter;Mimi McCord;Nicola Adderley;Eva Morris;Nigel Trudgill - 通讯作者:
Nigel Trudgill
The lattice of one-sided congruences on an inverse semigroup
- DOI:
10.1007/s10998-022-00497-z - 发表时间:
2019-01 - 期刊:
- 影响因子:0.8
- 作者:
Matthew Brookes - 通讯作者:
Matthew Brookes
Sa1106 THE IMPACT OF BILE SALT SEQUESTRANTS ON THE QUALITY OF LIFE OF PATIENTS WITH BILE ACID DIARRHOEA (BAD)
- DOI:
10.1016/s0016-5085(20)31380-9 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Aditi Kumar;Lauren Hughes;Oliver Phipps;Sara J. Simmons;Marie Green;Helen Steed;Jeffrey Butterworth;Hafid O. Al-Hassi;Matthew Brookes - 通讯作者:
Matthew Brookes
Congruences on the partial automorphism monoid of a free group action
自由群作用的部分自同构幺半群的同余
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0.8
- 作者:
Matthew Brookes - 通讯作者:
Matthew Brookes
Matthew Brookes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Brookes', 18)}}的其他基金
Realising the potential of magnetoencephalography (MEG) using Optically Pumped Magnetometers (OPMs)
使用光泵磁力计 (OPM) 实现脑磁图 (MEG) 的潜力
- 批准号:
MR/X012263/1 - 财政年份:2022
- 资助金额:
$ 62.13万 - 项目类别:
Research Grant
Development of a lifespan compliant magnetoencephalography system
开发符合寿命的脑磁图系统
- 批准号:
EP/V047264/1 - 财政年份:2021
- 资助金额:
$ 62.13万 - 项目类别:
Research Grant
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
$ 62.13万 - 项目类别:
Research Grant
EEG Based Global Network Models and Platform for Brain States Assessment
基于脑电图的大脑状态评估全球网络模型和平台
- 批准号:
DP240102329 - 财政年份:2024
- 资助金额:
$ 62.13万 - 项目类别:
Discovery Projects
Decoding the brain network of memory formation
解码记忆形成的大脑网络
- 批准号:
DP240101321 - 财政年份:2024
- 资助金额:
$ 62.13万 - 项目类别:
Discovery Projects
The Alzheimer risk factor CD2AP causes dysfunction of the brain vascular network
阿尔茨海默病危险因子CD2AP导致脑血管网络功能障碍
- 批准号:
481007 - 财政年份:2023
- 资助金额:
$ 62.13万 - 项目类别:
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
- 批准号:
2239780 - 财政年份:2023
- 资助金额:
$ 62.13万 - 项目类别:
Standard Grant
Elucidation of the brain network for pain chronification by functional identification of pain-activated neurons
通过疼痛激活神经元的功能识别来阐明疼痛慢性化的大脑网络
- 批准号:
23K08391 - 财政年份:2023
- 资助金额:
$ 62.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 62.13万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 62.13万 - 项目类别:
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE UNIVERSITY OF WASHINGTON
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与华盛顿大学的测序核心合同 RFP 75N95022R00031
- 批准号:
10931180 - 财政年份:2023
- 资助金额:
$ 62.13万 - 项目类别: