How does the cell distinguish between coding and non-coding RNAs in the cytoplasm?
细胞如何区分细胞质中的编码RNA和非编码RNA?
基本信息
- 批准号:MR/N000471/1
- 负责人:
- 金额:$ 80.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neurodegeneration is the progressive loss of function in neurons and is frequently the result of mis-regulation of gene expression. For proper cell function the genetic code needs to be expressed accurately. This relies upon making a copy of the genetic material termed ribonucleic acid (RNA) that moves to the place in the cell where it is needed. Each RNA is bound by a number of protein factors that regulate its activity. Disruptions to RNA-protein (RNP) interactions are highly detrimental to the cell's health. Mutations that upset RNPs can lead to many human diseases including spinal muscular atrophy. To understand such diseases better it is essential to expand our knowledge of how RNAs and proteins interact. The RNA copy of the gene can either be decoded by the ribosome and a protein made, or the RNA has activity itself without being decoded. We term these RNA that are not decoded, non-coding. The RNAs that are decoded (translated) into protein are coding RNAs. It is essential for the cell to recognise which RNAs should be decoded and which should not. Our current understanding is that these two types of RNA look very much alike. Many non-coding RNAs are present in neurons and changes in their levels can lead to neuronal cells losing their function, ultimately resulting neurological conditions e.g. Alzheimer's disease. It is therefore important to understand what these non-coding RNAs are doing. This project will demonstrate which RNAs are coding and non-coding in human neurons. I hypothesise that there are specific protein factors that bind to coding RNAs to mark them for translation and other proteins that mark non-coding RNAs for other activities. I will test this hypothesis and find out which proteins act to distinguish coding and non-coding RNAs, and to discover the biological effect of disrupting these RNA-protein complexes. For this study, I will use novel sequencing techniques, which I contributed to the development of, to determine which RNAs are non-coding and which are coding in human neurons. Once we know which are which, I will isolate examples of coding and non-coding RNA from cells and look for differences in the proteins that they bind. I propose to perform purification of non-coding and coding RNPs in both Drosophila S2 tissue culture cells and cultured human neurons. To demonstrate the biological importance of these RNPs, I will use genetic tools and create fly strains; disruptions to the RNPs will be assessed in the developing fruit fly. I will execute experiments both in the model organism, the fruit fly (Drosophila melanogaster) and cultured human neurons. Combining these two models I will look to see if the mechanisms used by cells to differentiate coding and non-coding RNAs are conserved between flies and humans. Fruit flies are ideal for assessing the biological impact of disrupting non-coding RNAs because extensive genetic tools are available. Identifying which RNAs are coding and which are non-coding in human neurons is essential because the RNPs we identify could be important for neuronal function. Characterising cytoplasmic non-coding RNAs in neurons will help further our understanding of how mis-regulation of gene expression in neurons can result in neurological conditions e.g. reduced neural specification. This work will unlock important mechanistic understanding of how cells distinguish between coding and non-coding RNAs, which will advance our understanding of the molecular basis of neurological conditions.
神经变性是神经元功能的进行性丧失,通常是基因表达失调的结果。为了正常的细胞功能,遗传密码需要被准确地表达。这依赖于复制称为核糖核酸(RNA)的遗传物质,将其移动到细胞中需要它的地方。每个RNA都被许多调节其活性的蛋白质因子结合。RNA-蛋白质(RNP)相互作用的破坏对细胞的健康非常有害。扰乱RNP的突变可能导致许多人类疾病,包括脊髓性肌萎缩症。为了更好地了解这些疾病,我们必须扩大我们对RNA和蛋白质如何相互作用的知识。 基因的RNA拷贝可以被核糖体解码并产生蛋白质,或者RNA本身具有活性而不被解码。我们称这些未被解码的RNA为非编码RNA。被解码(翻译)成蛋白质的RNA是编码RNA。细胞必须识别哪些RNA应该被解码,哪些不应该被解码。我们目前的理解是,这两种类型的RNA看起来非常相似。 许多非编码RNA存在于神经元中,其水平的变化可导致神经元细胞失去功能,最终导致神经系统疾病,例如阿尔茨海默病。因此,重要的是要了解这些非编码RNA在做什么。 该项目将展示哪些RNA在人类神经元中编码和非编码。我假设有特定的蛋白质因子与编码RNA结合,标记它们的翻译,还有其他蛋白质标记非编码RNA的其他活动。我将检验这一假设,并找出哪些蛋白质起区分编码和非编码RNA的作用,并发现破坏这些RNA-蛋白质复合物的生物学效应。在这项研究中,我将使用我参与开发的新测序技术来确定哪些RNA是非编码的,哪些是人类神经元中的编码RNA。一旦我们知道哪些是哪些,我将从细胞中分离编码和非编码RNA的例子,并寻找它们结合的蛋白质的差异。我建议在果蝇S2组织培养细胞和培养的人类神经元中进行非编码和编码RNP的纯化。为了证明这些RNP的生物学重要性,我将使用遗传工具并创建果蝇品系;将在发育中的果蝇中评估RNP的破坏。我将在模式生物果蝇(Drosophila melanogaster)和培养的人类神经元中进行实验。结合这两个模型,我将观察细胞用于区分编码和非编码RNA的机制在苍蝇和人类之间是否保守。果蝇是评估破坏非编码RNA的生物学影响的理想选择,因为有大量的遗传工具可用。确定哪些RNA在人类神经元中是编码的,哪些是非编码的是至关重要的,因为我们确定的RNP对神经元功能可能很重要。表征神经元中的细胞质非编码RNA将有助于我们进一步理解神经元中基因表达的错误调节如何导致神经系统疾病,例如神经特异性降低。这项工作将揭示细胞如何区分编码和非编码RNA的重要机制,这将促进我们对神经系统疾病分子基础的理解。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ribosome heterogeneity in Drosophila melanogaster gonads through paralog-switching.
- DOI:10.1093/nar/gkab606
- 发表时间:2022-02-28
- 期刊:
- 影响因子:14.9
- 作者:Hopes T;Norris K;Agapiou M;McCarthy CGP;Lewis PA;O'Connell MJ;Fontana J;Aspden JL
- 通讯作者:Aspden JL
Long non-coding RNAs in development and disease: conservation to mechanisms.
- DOI:10.1002/path.5405
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Tsagakis I;Douka K;Birds I;Aspden JL
- 通讯作者:Aspden JL
Optimization of Ribosome Footprinting Conditions for Ribo-Seq in Human and Drosophila melanogaster Tissue Culture Cells.
- DOI:10.3389/fmolb.2021.791455
- 发表时间:2021
- 期刊:
- 影响因子:5
- 作者:Douka K;Agapiou M;Birds I;Aspden JL
- 通讯作者:Aspden JL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julie Aspden其他文献
Julie Aspden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julie Aspden', 18)}}的其他基金
Unlocking the secrets of specialised ribosomes across eukaryotes
解开真核生物特化核糖体的秘密
- 批准号:
BB/X003086/1 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
Function and structure of specialised ribosomes in the testis
睾丸中特殊核糖体的功能和结构
- 批准号:
BB/S007407/1 - 财政年份:2019
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
相似国自然基金
衍射光学三维信息加密与隐藏的研究
- 批准号:60907004
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
How does neuronal contact mediate astrocyte transcriptional maturation?
神经元接触如何介导星形胶质细胞转录成熟?
- 批准号:
10748163 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
How does the Scar/WAVE complex control actin protrusions and cell migration? A combined cell biology and cryo-EM approach.
Scar/WAVE 复合物如何控制肌动蛋白突出和细胞迁移?
- 批准号:
MR/X000702/1 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
How does the Scar/WAVE complex control actin protrusions and cell migration? A combined cell biology and cryo-EM approach.
Scar/WAVE 复合物如何控制肌动蛋白突出和细胞迁移?
- 批准号:
MR/X000702/2 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
How does the tumour microenvironment affect cancer cell responses to DNA damage repair inhibition during radiotherapy?
肿瘤微环境如何影响放疗期间癌细胞对 DNA 损伤修复抑制的反应?
- 批准号:
2885514 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
Studentship
How does Cytomegalovirus use interferon lambda for optimal spread
巨细胞病毒如何利用 lambda 干扰素实现最佳传播
- 批准号:
10552002 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别:
How does bacterial cell lysate crowder affect alpha-synuclein fibrilization
细菌细胞裂解物拥挤器如何影响 α-突触核蛋白原纤维化
- 批准号:
572180-2022 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别:
University Undergraduate Student Research Awards
How does Cytomegalovirus use interferon lambda for optimal spread
巨细胞病毒如何利用 lambda 干扰素实现最佳传播
- 批准号:
10429668 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别:
How does neuromodulation shape the fluidity of spatial working memory?
神经调节如何塑造空间工作记忆的流动性?
- 批准号:
10472347 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别:
How does the ubiquitously expressed ZFX mediate cell type-specific transcriptional regulation
普遍表达的 ZFX 如何介导细胞类型特异性转录调控
- 批准号:
10458396 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别:
How does the ubiquitously expressed ZFX mediate cell type-specific transcriptional regulation
普遍表达的 ZFX 如何介导细胞类型特异性转录调控
- 批准号:
10677572 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别: