STRUCTURE AND REGULATION OF THE BLOOD NERVE BARRIER

血神经屏障的结构和调节

基本信息

  • 批准号:
    MR/N009169/1
  • 负责人:
  • 金额:
    $ 68.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Our nervous system is protected by barriers created by specialised blood vessels. These barriers are important for maintaining the normal function of the Central Nervous System (CNS) and the Peripheral Nervous System (PNS) and disruption of the barriers is associated with diseases as diverse as cancer, neurodegenerative disorders, neuropathies and stroke. In the CNS, which includes the brain and spinal cord, the Blood Brain Barrier (BBB) is fairly well described and consists of three main cell types. Endothelial cells that form the blood vessels themselves and pericytes and astrocytes that wrap around the endothelial cells to completely cover their outer surface. The endothelial cells provide the main barrier function. They do this by having specialised tight junctions between them that stop molecules passing between them. They also have low levels of transcytosis, a mechanism by which molecules can be transported through a cell. These properties are induced by the environment of the CNS and it is known that signals from pericytes and astrocytes regulate distinct aspects of the BBB. Because of the barrier the endothelial cells express special transporters that enable the passage of molecules into and out of the CNS that are needed for brain function. One effect of some efflux transporters is that they can provide a block to the uptake of drugs into the CNS and this has been a major hindrance to the delivery of drugs to the brain.In contrast the Blood Nerve Barrier (BNB) that protects the PNS is poorly characterised. It is known to be different from the BBB, in its permeability and it must be made of different cell types, as astrocytes for example do not exist in the PNS. However, as the BBB protects the brain, the BNB it is known to be important for the health of our nerves and disruption is associated with pathologies that cause nerve damage, pain and cancer. Differences to the BBB however, may explain why certain drugs such as taxol and other drugs known to treat cancer cause damage mainly to the PNS.The aim of this proposed study is to characterise the structure of the BNB, determine the molecules responsible for its formation and identify how it can be regulated. Using a range of cutting-edge microscopy techniques, we will establish the anatomy of the BNB from the tissue to the molecular level. We will also define the characteristics of the distinct aspects of BNB permeability. We will then perform a molecular analysis to determine which genes are important in defining the barrier and which signals confer distinct properties of the barrier. Finally we will determine how it can be regulated and relate these findings to pathologies of the PNS. We have developed a mouse model in which signals from another cell type in the nerve, Schwann cells, can reversibly breakdown the BNB is a manner that is relevant to the normal injury response. This will give us an extremely powerful system in which to study the temporal reversible regulation of the barrier in the absence of injury or other complex pathologies. It should also enable us to identify how signals from Schwann cells regulate the BNB and whether these mechanisms are relevant to pathologies of the PNS. In the long-term, we hope that these studies will result in new treatments for disorders of the PNS and possibly also the CNS.
我们的神经系统受到特殊血管形成的屏障的保护。这些屏障对于维持中枢神经系统 (CNS) 和周围神经系统 (PNS) 的正常功能非常重要,并且屏障的破坏与癌症、神经退行性疾病、神经病和中风等多种疾病有关。在中枢神经系统(包括大脑和脊髓)中,血脑屏障 (BBB) 得到了很好的描述,它由三种主要细胞类型组成。形成血管本身的内皮细胞以及包裹内皮细胞以完全覆盖其外表面的周细胞和星形胶质细胞。内皮细胞提供主要的屏障功能。它们通过在它们之间建立专门的紧密连接来阻止分子在它们之间通过来实现这一点。它们还具有低水平的转胞吞作用,这是一种分子在细胞中运输的机制。这些特性是由中枢神经系统环境诱导的,并且已知来自周细胞和星形胶质细胞的信号调节血脑屏障的不同方面。由于屏障的存在,内皮细胞表达特殊的转运蛋白,使大脑功能所需的分子能够进出中枢神经系统。一些外排转运蛋白的作用之一是它们可以阻止中枢神经系统吸收药物,这一直是药物输送到大脑的主要障碍。相比之下,保护三七总皂苷的血神经屏障 (BNB) 的特征很少。众所周知,它与血脑屏障的渗透性不同,并且它必须由不同的细胞类型组成,例如星形胶质细胞不存在于三七总皂甙中。然而,由于 BBB 可以保护大脑,因此众所周知,BNB 对我们的神经健康非常重要,而其破坏则与导致神经损伤、疼痛和癌症的病理有关。然而,与 BBB 的差异可以解释为什么某些药物(例如紫杉醇和其他已知治疗癌症的药物)主要对 PNS 造成损害。这项研究的目的是表征 BNB 的结构,确定负责其形成的分子并确定如何对其进行调节。使用一系列尖端显微镜技术,我们将建立 BNB 从组织到分子水平的解剖结构。我们还将定义 BNB 渗透性不同方面的特征。然后,我们将进行分子分析,以确定哪些基因对于定义屏障很重要,以及哪些信号赋予屏障不同的特性。最后,我们将确定如何对其进行调节,并将这些发现与三七总皂苷的病理学联系起来。我们开发了一种小鼠模型,其中来自神经中另一种细胞类型雪旺细胞的信号可以可逆地分解 BNB,这是一种与正常损伤反应相关的方式。这将为我们提供一个极其强大的系统,用于研究在没有损伤或其他复杂病理的情况下屏障的时间可逆调节。它还应该使我们能够确定雪旺细胞的信号如何调节 BNB 以及这些机制是否与 PNS 的病理相关。从长远来看,我们希望这些研究能够为 PNS 甚至 CNS 疾病带来新的治疗方法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population.
周围神经的稳态和再生的调节不同于中枢神经系统并且独立于干细胞群。
  • DOI:
    10.1242/dev.170316
  • 发表时间:
    2018-12-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stierli S;Napoli I;White IJ;Cattin AL;Monteza Cabrejos A;Garcia Calavia N;Malong L;Ribeiro S;Nihouarn J;Williams R;Young KM;Richardson WD;Lloyd AC
  • 通讯作者:
    Lloyd AC
HDAC3 Regulates the Transition to the Homeostatic Myelinating Schwann Cell State.
HDAC3 调节向稳态髓鞘雪旺细胞状态的转变。
  • DOI:
    10.1016/j.celrep.2018.11.045
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Rosenberg LH
  • 通讯作者:
    Rosenberg LH
Macrophages Enforce the Blood Nerve Barrier
巨噬细胞强化血神经屏障
  • DOI:
    10.1101/493494
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Malong L
  • 通讯作者:
    Malong L
Editorial overview: Glial biology.
编辑概述:神经胶质生物学。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alison Lloyd其他文献

in translation collaborative practices and cooperation
翻译协作实践与合作
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Katan;C. Spinzi;Leah Gerber;Lintao Qi;Graeme Simsion;Julie Koh;Morris Gleitzman;Richard Fidler;Richard Flanagan;Charlotte Wood;Alexis Wright;Fiona Wright;Tom Keneally;Bronwyn Bancroft;Geraldine Brooks;John Marsden;R. Drewe;Clare Wright;Graeme Base;Jane Godwin;A. J. Betts;M. Clarke;Tim Cope;Brooke Davis Zohab;Zee Khan;Paul Kelly;Jennifer Mills;Damon Young;Ali Alizadeh;Jenevieve Chang;Benjamin Law;Alison Lloyd;Oliver Phommavanh;Gabrielle Wang;Pamela Williams;Leanne Hall;Dominique Wilson;George Megalogenis;Meredith Badger;A. Kwaymullina;Alison Lester;Pam Macintyre;Robert Newton;Ann James;Anne Spudvilas;Tim Flannery
  • 通讯作者:
    Tim Flannery
OS-105 - Hepatic nerve endings are rewired by cholestatic injury to connect inflamed lymphatics to sites of ductular remodelling
  • DOI:
    10.1016/s0168-8278(23)00558-5
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Luke Noon;Anne-Laure Cattin;Jemima Burden;Luigi Aloia;Giulia Casal;Marina Berenguer;Judith Pérez;Alison Lloyd
  • 通讯作者:
    Alison Lloyd

Alison Lloyd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alison Lloyd', 18)}}的其他基金

A novel approach to improve the repair of injured peripheral nerves
改善受损周围神经修复的新方法
  • 批准号:
    MR/R023816/1
  • 财政年份:
    2018
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Research Grant

相似海外基金

Defining a new mechanism of blood pressure regulation and its role during sepsis
定义血压调节的新机制及其在脓毒症期间的作用
  • 批准号:
    MR/Y011805/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Research Grant
Regulation of microglial function by blood-borne factors
血源性因子对小胶质细胞功能的调节
  • 批准号:
    10679408
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
Brain capillary Piezo1 ion channels and blood flow regulation in Alzheimer’s Disease
阿尔茨海默病中的脑毛细血管 Piezo1 离子通道和血流调节
  • 批准号:
    10662664
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
Regulation of NKCC2 isoforms and blood pressure by tumor necrosis factor-alpha
肿瘤坏死因子-α 对 NKCC2 亚型和血压的调节
  • 批准号:
    10801043
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
G6PC Enzymology, Structure, Function and Role in the Regulation of Fasting Blood Glucose
G6PC 酶学、结构、功能及其在空腹血糖调节中的作用
  • 批准号:
    10584866
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
Astrocytic NBCe1 in regulation of blood brain barrier integrity
星形胶质细胞 NBCe1 对血脑屏障完整性的调节
  • 批准号:
    10810958
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
Regulation of Blood Glycoproteins by Lectin Receptors in Health and Disease
健康和疾病中凝集素受体对血液糖蛋白的调节
  • 批准号:
    10658456
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
Astrocyte regulation of cerebral blood flow at the intersection of ischemia and Alzheimer's disease
星形胶质细胞对缺血和阿尔茨海默病交叉点脑血流的调节
  • 批准号:
    10774128
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
Olfactory Receptor 558 (Olfr558) and Blood Pressure Regulation in Aging
嗅觉受体 558 (Olfr558) 和衰老过程中的血压调节
  • 批准号:
    10646623
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
The Role of Neurovascular Interactions in the Development and Regulation of the Blood-Brain Barrier
神经血管相互作用在血脑屏障发育和调节中的作用
  • 批准号:
    10915164
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了