Distributed anatomical circuits for decision-making, inference, and learning
用于决策、推理和学习的分布式解剖电路
基本信息
- 批准号:MR/P024955/1
- 负责人:
- 金额:$ 332.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Every day we make decisions about what to do next. We do this because we are constantly monitoring and evaluating how well things are going. As a consequence we adjust our behaviour so it is appropriate for the current context or we decide to take one course of action rather than another. Sometimes we are aware of making these evaluations and decisions but often we are not. Nevertheless, however much we take these abilities for granted, it is striking when they are altered in psychological illnesses such as depression. The aim of this proposal is to undertake work to understand what the brain does to enable us to behave in the way that we do. Our focus is on parts of the brain called the prefrontal and cingulate cortex. We already know that these brain regions are especially important for the behaviour we are interested in but what we do not know is how they accomplish the role they play. We want to find out the mechanisms by which they operate and the way in which they interact with the rest of the brain. A key part of the work is designing behavioural tasks to probe cognitive operations in a precise way to reveal their mechanistic basis. A second component is recording brain activity and seeing how it relates to behaviour. We do this by using a magnetic resonance imaging (MRI) scanner, usually by taking what are called functional MRI (fMRI) scans. FMRI scans tell us about blood oxygenation in the brain. This is useful because the blood oxygen level dependent (BOLD) signal tracks the activity of the brain's cells -- neurons -- in a very precise way. It is, for example, possible to estimate changes in distribution of BOLD signal in specific brain areas from moment to moment as a decision is made or as feedback is provided to enable adjustments and changes in behaviour. We conduct the fMRI recording in animals because we also want to examine the consequences of manipulating the activity we record. This is essential for finding out what activity patterns are causally driving behaviours. We can test causation by making precise and circumscribed interventions in the brain. We do this under anaesthesia in the same way that it would be done with human patients. When the animals recover we monitor changes in behaviour. Usually there are no obvious changes in behaviour because the interventions we carry out are subtle. If, however, we have designed our behavioural tasks with care so as to precisely probe specific cognitive processes, then we may be able to pick up equally subtle alterations in behaviour. They can then be measured and quantified. We use macaques because they provide a model of many features of human prefrontal and cingulate cortex. Most other animals lack these features so they cannot be used as models. One of the questions that we are examining concerns how quickly we should change and adjust our behaviour. There is evidence that in some psychological illnesses, such as bipolar depression, our behaviour becomes too responsive to each minor piece of feedback; the behaviour becomes too volatile. We are also interested in how, when we receive feedback for a choice, we attribute that feedback correctly to the event that really caused it. There is evidence that we do not always manage this simple job well and when we are very poor at it we may draw odd conclusions about what we are, and are not, responsible for. Again this may be a feature of psychological illnesses. A third process we are interested in is inference. Often neuroscientists have studied the neural mechanisms that mediate learning about particular events or actions. Once the learning is done a good decision can be made next time the event is encountered or the action is needed. However, often in the real world we make inferences about what to do next on the basis of experience of some situations with some similar component elements. We will attempt to understand how such inferences are made.
每天我们都在决定下一步该做什么。我们这样做是因为我们不断地监测和评估事情的进展情况。因此,我们调整自己的行为,使其适合当前的环境,或者我们决定采取一种行动而不是另一种行动。有时候,我们意识到要做出这些评估和决定,但我们往往没有。然而,无论我们如何认为这些能力是理所当然的,当它们在抑郁症等心理疾病中发生变化时,这是惊人的。这项建议的目的是开展工作,了解大脑做什么,使我们能够以我们的方式行事。我们关注的是大脑中被称为前额叶和扣带皮层的部分。我们已经知道,这些大脑区域对于我们感兴趣的行为特别重要,但我们不知道的是它们如何完成它们所扮演的角色。我们想找出它们的运作机制,以及它们与大脑其他部分相互作用的方式。 这项工作的一个关键部分是设计行为任务,以精确的方式探索认知操作,以揭示其机制基础。第二个组成部分是记录大脑活动,并观察它与行为的关系。我们通过使用磁共振成像(MRI)扫描仪来实现这一点,通常是通过所谓的功能性MRI(fMRI)扫描。功能磁共振成像扫描告诉我们大脑中的血氧含量。这是有用的,因为血氧水平依赖(BOLD)信号以非常精确的方式跟踪大脑细胞-神经元的活动。例如,当做出决定或提供反馈以实现行为的调整和改变时,可以随时估计特定大脑区域中BOLD信号分布的变化。 我们在动物身上进行功能磁共振成像记录,因为我们也想检查操纵我们记录的活动的后果。这对于找出哪些活动模式是因果驱动行为至关重要。我们可以通过在大脑中进行精确和有限制的干预来测试因果关系。我们在麻醉状态下做这件事,就像对人类病人做这件事一样。当动物恢复时,我们监测它们的行为变化。通常情况下,行为没有明显的变化,因为我们进行的干预是微妙的。然而,如果我们精心设计了我们的行为任务,以便精确地探测特定的认知过程,那么我们可能能够发现同样微妙的行为变化。然后可以对其进行测量和量化。我们使用猕猴,因为它们提供了人类前额叶和扣带皮层的许多特征的模型。大多数其他动物缺乏这些特征,因此不能用作模型。 我们正在研究的问题之一是,我们应该多快改变和调整我们的行为。有证据表明,在某些心理疾病中,如双相抑郁症,我们的行为对每一个微小的反馈都变得过于敏感;行为变得过于波动。我们也很感兴趣的是,当我们收到一个选择的反馈时,我们如何正确地将反馈归因于真正导致选择的事件,有证据表明,我们并不总是能很好地处理这个简单的工作,当我们做得很差时,我们可能会得出奇怪的结论,我们应该对什么负责,而不是对什么负责。这也可能是心理疾病的一个特征。我们感兴趣的第三个过程是推理。神经科学家经常研究调节学习特定事件或行为的神经机制。一旦学习完成,下次遇到事件或需要采取行动时就可以做出正确的决定。然而,在真实的世界中,我们经常根据对某些具有类似组成元素的情况的经验来推断下一步该做什么。我们将试图理解这样的推论是如何作出的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiple systems in macaques for tracking prediction errors and other types of surprise.
- DOI:10.1371/journal.pbio.3000899
- 发表时间:2020-10
- 期刊:
- 影响因子:9.8
- 作者:Grohn J;Schüffelgen U;Neubert FX;Bongioanni A;Verhagen L;Sallet J;Kolling N;Rushworth MFS
- 通讯作者:Rushworth MFS
Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation
使用经颅聚焦超声刺激操纵灵长类动物大脑的皮层下和深层皮层活动
- DOI:10.1101/342303
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Folloni D
- 通讯作者:Folloni D
Ultrasound modulation of macaque prefrontal cortex selectively alters credit assignment-related activity and behavior.
- DOI:10.1126/sciadv.abg7700
- 发表时间:2021-12-17
- 期刊:
- 影响因子:13.6
- 作者:Folloni D;Fouragnan E;Wittmann MK;Roumazeilles L;Tankelevitch L;Verhagen L;Attali D;Aubry JF;Sallet J;Rushworth MFS
- 通讯作者:Rushworth MFS
Structural and resting state functional connectivity beyond the cortex.
- DOI:10.1016/j.neuroimage.2021.118379
- 发表时间:2021-10-15
- 期刊:
- 影响因子:5.7
- 作者:Harrison OK;Guell X;Klein-Flügge MC;Barry RL
- 通讯作者:Barry RL
Viewing Ambiguous Social Interactions Increases Functional Connectivity between Frontal and Temporal Nodes of the Social Brain.
- DOI:10.1523/jneurosci.0870-20.2021
- 发表时间:2021-07-14
- 期刊:
- 影响因子:0
- 作者:Ainsworth M;Sallet J;Joly O;Kyriazis D;Kriegeskorte N;Duncan J;Schüffelgen U;Rushworth MFS;Bell AH
- 通讯作者:Bell AH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rushworth其他文献
Deep Transcranial Ultrasonic Brain Stimulation During Decision-Making in Changing Social-Emotional Environments
在不断变化的社会情感环境中决策期间的深部经颅超声脑刺激
- DOI:
10.1016/j.brs.2024.12.582 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.400
- 作者:
Miruna Rascu;Johannes Algermissen;Lilian Weber;Tim den Boer;Matthew Rushworth;Miriam Klein-Flügge - 通讯作者:
Miriam Klein-Flügge
変わりゆく意思決定
改变决策
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Rei Akaishi (赤石れい);Nils Kolling;Joshua Brown;Matthew Rushworth;赤石 黎 - 通讯作者:
赤石 黎
Navigation and decision in a virtual foraging task for monkeys
猴子虚拟觅食任务中的导航和决策
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Rei Akaishi (赤石れい);Nils Kolling;Joshua Brown;Matthew Rushworth;赤石 黎;Rei Akaishi - 通讯作者:
Rei Akaishi
Matthew Rushworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rushworth', 18)}}的其他基金
Neuromodulatory-prefrontal interactions in primates
灵长类动物的神经调节-前额叶相互作用
- 批准号:
BB/W003392/1 - 财政年份:2022
- 资助金额:
$ 332.53万 - 项目类别:
Research Grant
Frontal cortical mechanisms and interactions during learning and decision making
学习和决策过程中的额叶皮层机制和相互作用
- 批准号:
G0902373/1 - 财政年份:2011
- 资助金额:
$ 332.53万 - 项目类别:
Research Grant
Parietal cortical structure and function in attentional disorders
注意力障碍中的顶皮质结构和功能
- 批准号:
G0802146/1 - 财政年份:2009
- 资助金额:
$ 332.53万 - 项目类别:
Research Grant
Frontal cortical interactions during decision-making and social valuation
决策和社会评价过程中的额叶皮质相互作用
- 批准号:
G0600994/1 - 财政年份:2007
- 资助金额:
$ 332.53万 - 项目类别:
Research Grant
相似国自然基金
盲人脑网络可塑性的磁共振影像研究
- 批准号:30900476
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development and Validation of a Genetically Encoded Method to Trace and Manipulate Neuronal Circuits in Zebrafish - DIVERSITY SUPPLEMENT
追踪和操纵斑马鱼神经元回路的基因编码方法的开发和验证 - 多样性补充
- 批准号:
10731536 - 财政年份:2023
- 资助金额:
$ 332.53万 - 项目类别:
Cortical circuits for the integration of parallel short-latency auditory pathways
用于整合并行短延迟听觉通路的皮层电路
- 批准号:
10524362 - 财政年份:2022
- 资助金额:
$ 332.53万 - 项目类别:
Anatomical and Functional Characterization of Gastrointestinal to Spinal Cord Circuits
胃肠道至脊髓回路的解剖学和功能特征
- 批准号:
10676125 - 财政年份:2022
- 资助金额:
$ 332.53万 - 项目类别:
Anatomical and Functional Characterization of Gastrointestinal to Spinal Cord Circuits
胃肠道至脊髓回路的解剖学和功能特征
- 批准号:
10531717 - 财政年份:2022
- 资助金额:
$ 332.53万 - 项目类别:
Development and Validation of a Genetically Encoded Method to Trace and Manipulate Neuronal Circuits in Zebrafish
追踪和操纵斑马鱼神经元回路的基因编码方法的开发和验证
- 批准号:
10505822 - 财政年份:2022
- 资助金额:
$ 332.53万 - 项目类别:
Multimodal characterization of prefrontal and premotor circuits underlying perceptual decision making in therhesus monkey
恒河猴知觉决策的前额叶和运动前回路的多模态特征
- 批准号:
10441553 - 财政年份:2021
- 资助金额:
$ 332.53万 - 项目类别:
Multimodal characterization of prefrontal and premotor circuits underlying perceptual decision making in therhesus monkey
恒河猴知觉决策的前额叶和运动前回路的多模态特征
- 批准号:
10278593 - 财政年份:2021
- 资助金额:
$ 332.53万 - 项目类别:
Multimodal Characterization of Prefrontal and Premotor Circuits Underlying Perceptual Decision Making in Therhesus Monkey
恒河猴感知决策的前额叶和前运动回路的多模态特征
- 批准号:
10650300 - 财政年份:2021
- 资助金额:
$ 332.53万 - 项目类别:
The role of corticostriatal circuits in visually-guided behavior
皮质纹状体回路在视觉引导行为中的作用
- 批准号:
10320876 - 财政年份:2020
- 资助金额:
$ 332.53万 - 项目类别: