Structure guided design of a transmission-blocking malaria vaccine targeting Pfs48/45
针对 Pfs48/45 的阻断传播疟疾疫苗的结构引导设计
基本信息
- 批准号:MR/R001138/1
- 负责人:
- 金额:$ 56.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Malaria is one of the most devastating infectious diseases to affect humankind. It kills around half a million people, mostly young children in Africa. It also places a huge disease burden on large parts of the world, leading to hundreds of millions of serious infections. As well as directly causing suffering and death, this limits the development of large parts of the globe, reducing productivity and maintaining inequality.Malaria is caused by a tiny, single celled parasite, known as Plasmodium. An individual contracts malaria when bitten by an infected mosquito. The parasites are injected into the blood stream as the mosquito feeds. These first develop and divide within the liver without causing disease. They next emerge from the liver and infect red blood cells, replicating and increasing in number and driving the symptoms of malaria. At the same time, a fraction of the parasites within the blood take a different developmental route, adopting a form known as the gametocytes. When a mosquito takes a blood meal from an infected person, they are likely to ingest some of these gametocytes. Within the midgut of the mosquito these develop into male and female gametes, and fuse together. This completes the infection cycle and the parasites move to the salivary glands of the mosquito, ready to be injected into another human victim.Development of a vaccine to prevent malaria has proved very challenging and it is likely that the vaccines of the future will simultaneously target multiple stages of the parasite life cycle, blocking both liver and blood cell entry. One component of such a vaccine is likely to target the gametes of the parasite and to stop them from fusing. This is known as a transmission-blocking vaccine component as it will prevent the development of the parasite within the mosquito and will therefore stop the disease from being passed from person to person through the action of this blood-sucking insect. We study a molecule called Pfs48/45 that is found on the surface of the gametocytes and gametes of Plasmodium parasites. Pfs48/45 is essential for a male gamete to fuse with a female gamete and if the immune system of an animal is exposed to Pfs48/45, it produces molecules called antibodies that bind to Pfs48/45 and prevent gametes from fusing. This means that if we can include Pfs48/45 in a vaccine, it will trigger the human body to make antibodies that will prevent malaria from being transmitted to other people. This will reduce the prevalence of malaria in the community and will help to eradicate the disease.Despite this promise, Pfs48/45 is a challenging molecule to produce in a functional form and in large quantities. In addition, if we are to make vaccines that simultaneously contain multiple components, it will be important for each component to be as small and focused as possible, to make it easier and cheaper for them to be produced and distributed. For this reason we aim to understand the structure and shape of Pfs48/45 and also to understand the location and the nature of the sites where the gamete-fusion-preventing antibodies bind. This information will allow us to use the latest computational tools to design novel molecules which contain just the regions of Pfs48/45 that are needed to bind to inhibitory antibodies.We will then inject mice with these novel immunogens and study the antibodies that are produced in a mosquito-infection experiment. If mosquitoes are fed on human blood containing malaria parasites, gametes can fuse, leading to the formation of cysts in the gut wall of the mosquito. If gamete fusion is prevented, the cysts are no longer formed. We will therefore study the ability of the antibodies induced by our novel immunogens to prevent cyst formation revealing which of our designs is most effective at blocking gamete fusion and preventing transmission of the malaria parasite. These newly designed molecules will form part of the malaria vaccines of the future.
疟疾是影响人类的最具破坏性的传染病之一。它导致大约50万人死亡,其中大多数是非洲的儿童。它还给世界大部分地区带来巨大的疾病负担,导致数亿人严重感染。除了直接造成痛苦和死亡外,这还限制了地球仪大部分地区的发展,降低了生产力,维持了不平等。疟疾是由一种被称为疟原虫的微小单细胞寄生虫引起的。一个人被受感染的蚊子叮咬后就会感染疟疾。当蚊子进食时,寄生虫被注射到血液中。这些首先在肝脏内发展和分裂而不引起疾病。它们接下来从肝脏中出现并感染红细胞,复制并增加数量并引发疟疾症状。与此同时,血液中的一部分寄生虫采取不同的发育途径,采用称为配子体的形式。当蚊子从感染者身上吸血时,它们很可能会摄入一些配子母细胞。在蚊子的中肠内,这些配子发育成雄性和雌性配子,并融合在一起。这完成了感染周期,寄生虫移动到蚊子的唾液腺,准备注射到另一个人类受害者身上。开发预防疟疾的疫苗已经证明是非常具有挑战性的,未来的疫苗可能会同时针对寄生虫生命周期的多个阶段,阻止肝脏和血细胞进入。这种疫苗的一个组成部分可能是针对寄生虫的配子并阻止它们融合。这被称为传播阻断疫苗成分,因为它将防止蚊子体内寄生虫的发展,因此将阻止疾病通过这种吸血昆虫的作用在人与人之间传播。我们研究了一种名为Pfs 48/45的分子,这种分子存在于疟原虫的配子母细胞和配子表面。Pfs 48/45是雄性配子与雌性配子融合所必需的,如果动物的免疫系统暴露于Pfs 48/45,它会产生称为抗体的分子,与Pfs 48/45结合并阻止配子融合。这意味着,如果我们能在疫苗中加入Pfs 48/45,它将触发人体产生抗体,防止疟疾传播给其他人。这将减少社区中疟疾的流行,并有助于根除这种疾病。尽管有这样的前景,Pfs 48/45是一种具有挑战性的分子,要以功能形式大量生产。此外,如果我们要制造同时含有多种成分的疫苗,那么每种成分都必须尽可能小和集中,以便更容易和更便宜地生产和销售。出于这个原因,我们的目标是了解Pfs 48/45的结构和形状,并了解防止配子融合的抗体结合的位点的位置和性质。这些信息将使我们能够使用最新的计算工具来设计新的分子,这些分子只包含Pfs 48/45的区域,这些区域是与抑制性抗体结合所必需的。然后,我们将向小鼠注射这些新的免疫原,并研究在蚊子感染实验中产生的抗体。如果蚊子以含有疟原虫的人类血液为食,配子可以融合,导致蚊子肠壁中形成包囊。如果配子融合被阻止,包囊就不再形成。因此,我们将研究由我们的新型免疫原诱导的抗体防止囊肿形成的能力,揭示我们的设计中哪一种在阻断配子融合和防止疟原虫传播方面最有效。这些新设计的分子将成为未来疟疾疫苗的一部分。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural basis for recognition of the malaria vaccine candidate Pfs48/45 by a transmission blocking antibody.
- DOI:10.1038/s41467-018-06340-9
- 发表时间:2018-09-20
- 期刊:
- 影响因子:16.6
- 作者:Lennartz F;Brod F;Dabbs R;Miura K;Mekhaiel D;Marini A;Jore MM;Søgaard MM;Jørgensen T;de Jongh WA;Sauerwein RW;Long CA;Biswas S;Higgins MK
- 通讯作者:Higgins MK
Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies
候选疟疾疫苗 Pfs48/45 的结构及其传播阻断抗体的识别
- DOI:10.1101/2022.05.24.493318
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ko K
- 通讯作者:Ko K
Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies.
- DOI:10.1038/s41467-022-33379-6
- 发表时间:2022-09-24
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Assessment of Antibodies Induced by Multivalent Transmission-Blocking Malaria Vaccines.
评估由多价传播阻断疟疾疫苗诱导的抗体。
- DOI:10.3389/fimmu.2017.01998
- 发表时间:2017
- 期刊:
- 影响因子:7.3
- 作者:Menon V;Kapulu MC;Taylor I;Jewell K;Li Y;Hill F;Long CA;Miura K;Biswas S
- 通讯作者:Biswas S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Higgins其他文献
Interpretive Play and the Player Psychology of Optimal Arousal Regulation
解释性游戏和最佳唤醒调节的玩家心理
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Matthew Higgins;Peter Howell - 通讯作者:
Peter Howell
Novel methodologies for determining a suitable polymer for effective sludge dewatering
- DOI:
10.1016/j.jece.2018.06.012 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Vu Hien Phuong To;Tien Vinh Nguyen;Saravanamuthu Vigneswaran;Heriberto Bustamante;Matthew Higgins;Derek van Rys - 通讯作者:
Derek van Rys
The Income Implications of Rising U.S. International Liabilities
美国国际负债上升对收入的影响
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:1.2
- 作者:
Matthew Higgins;T. Klitgaard;C. Tille - 通讯作者:
C. Tille
Enhancing dewaterability of water resource recovery facility solids with electrochemical treatment through synergetic effects of acidification and cation removal
- DOI:
10.1016/j.cej.2024.154086 - 发表时间:
2024-09-15 - 期刊:
- 影响因子:
- 作者:
Zixuan Wang;Matthew Higgins;Zhen He - 通讯作者:
Zhen He
IT IS MORE THAN A GAME: AN ETHNOGRAPHY OF COMMUNICATION TREATMENT OF RESILIENCE AS A KEY ELEMENT OF BASKETBALL CULTURE
它不仅仅是一场比赛:沟通的民族志将韧性视为篮球文化的关键要素
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Matthew Higgins - 通讯作者:
Matthew Higgins
Matthew Higgins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Higgins', 18)}}的其他基金
Establishing a cryogenic correlative light-electron microscopy hub for Oxford
为牛津建立低温关联光电子显微镜中心
- 批准号:
BB/X019276/1 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant
Structural studies of Plasmodium PIR proteins and their interactions with human inhibitory immune receptors
疟原虫 PIR 蛋白的结构研究及其与人类抑制性免疫受体的相互作用
- 批准号:
MR/T000368/1 - 财政年份:2020
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant
The molecular mechanism for trypanosome cell death induced by ApoLI and its inactivation in human infective T. b. rhodesiense.
ApoLI 诱导锥虫细胞死亡的分子机制及其在人类感染性锥虫中的失活。
- 批准号:
MR/P001424/1 - 财政年份:2016
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant
Structural studies of the clustering of PfEMP1 proteins on the surface of Plasmodium falciparum-infected erythrocytes
恶性疟原虫感染红细胞表面 PfEMP1 蛋白聚集的结构研究
- 批准号:
G0901062/2 - 财政年份:2011
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant
Structural studies of the clustering of PfEMP1 proteins on the surface of Plasmodium falciparum-infected erythrocytes
恶性疟原虫感染红细胞表面 PfEMP1 蛋白聚集的结构研究
- 批准号:
G0901062/1 - 财政年份:2010
- 资助金额:
$ 56.6万 - 项目类别:
Research Grant
Interactions of Exocellular Proteins, Polysaccharide and Cations During Bioflocculation in Suspended Growth Bioreactors
悬浮生长生物反应器中生物絮凝过程中胞外蛋白、多糖和阳离子的相互作用
- 批准号:
9907333 - 财政年份:1999
- 资助金额:
$ 56.6万 - 项目类别:
Standard Grant
相似海外基金
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
Operating Grants
High-throughput screening and structure-guided optimization of oligonucleotides for site-directed RNA editing by ADARs.
通过 ADAR 进行定点 RNA 编辑的寡核苷酸的高通量筛选和结构引导优化。
- 批准号:
10636547 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
SBIR Phase I: Structure-guided design of anti-inflammatory modulators of protease-activated receptor 1 (PAR1)
SBIR I 期:蛋白酶激活受体 1 (PAR1) 抗炎调节剂的结构引导设计
- 批准号:
2223225 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
Standard Grant
Structure-guided neutralizing antibodies developed using EpiVolve technology
使用 EpiVolve 技术开发的结构引导中和抗体
- 批准号:
10698958 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
Structure-guided design of protease-resistant, lipopeptide inhibitors of SARS-CoV-2
SARS-CoV-2 蛋白酶抗性脂肽抑制剂的结构指导设计
- 批准号:
10679139 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
Structure-guided functional analysis of GluA4-NPTX2 interaction during PVIN homeostatic scaling
PVIN 稳态缩放过程中 GluA4-NPTX2 相互作用的结构引导功能分析
- 批准号:
10808384 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
Immunoprofiling of Opioid Use Disorder Patients to inform structure-guided design of opioid-specific monoclonal antibodies
阿片类药物使用障碍患者的免疫分析可为阿片类药物特异性单克隆抗体的结构指导设计提供信息
- 批准号:
10751233 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
Structure-guided immunogens to elicit pan-coronavirus B cell responses
结构引导免疫原引发泛冠状病毒 B 细胞反应
- 批准号:
10420514 - 财政年份:2022
- 资助金额:
$ 56.6万 - 项目类别:
A protein design- and structure-guided interrogation of signal transduction mechanisms
蛋白质设计和结构引导的信号转导机制询问
- 批准号:
10537123 - 财政年份:2022
- 资助金额:
$ 56.6万 - 项目类别:
Structure-guided engineering to increase respiratory syncytial virus G protein immunogenicity
结构引导工程提高呼吸道合胞病毒G蛋白免疫原性
- 批准号:
10521837 - 财政年份:2022
- 资助金额:
$ 56.6万 - 项目类别:














{{item.name}}会员




