Molecular Mechanism of IMD (NF-kB) Inhibition by Dengue Virus in the Mosquito Aedes Aegypti, and Implications for Transmission and Emergence
埃及伊蚊登革热病毒抑制 IMD (NF-kB) 的分子机制及其传播和出现的影响
基本信息
- 批准号:MR/R010315/2
- 负责人:
- 金额:$ 9.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dengue virus is the most important mosquito-borne virus causing human disease. Almost half the world's population is at risk of dengue virus infection, mostly in tropical low and middle-income countries. Approximately 400 million people are infected each year, with about 100 million cases of the severe flu-like dengue fever and 500,000 cases of the more severe and potentially fatal dengue haemorrhagic fever. The major impact of dengue disease, on top of significant suffering and loss of life and economic productivity, is that underdeveloped healthcare systems are overwhelmed during the almost annual epidemics experienced by many countries, affecting routine and emergency medical care. There are no medicines to treat dengue and the only licensed vaccine is imperfect and not recommended for widespread global use.Dengue virus is transmitted by mosquitoes and cannot spread directly between humans. When a mosquito feeds on an infected person, it too becomes infected with dengue virus. The virus is passed on when the mosquito feeds on another person, causing that second person to become infected. Preventing transmission through the mosquito is therefore an effective way of reducing the global disease burden.The mosquito that usually transmits dengue virus is the 'yellow fever mosquito' (Latin name Aedes aegypti). Like humans, mosquitoes have an immune system that protects them against viral diseases. The immune response of the yellow fever mosquito springs into action when the insect is infected with viruses, but not all arms of the immune system are able to fight dengue virus. We discovered that this is because dengue virus actively blocks certain parts of the immune response. This grant will investigate how dengue virus escapes from these arms of the immune system, a first for any mosquito-borne virus. Ultimately, this will allow us to develop ways of strengthening the immune system of mosquitoes to stop them from being infected with dengue virus, which will reduce transmission and protect people from dengue disease.Our first goal is to work out how dengue virus blocks mosquito immune responses. Dengue virus makes ten proteins when it infects a mosquito, and we predict that one of these proteins disrupts mosquito immune responses. We will identify which protein can do this, and how. Our second goal will look at this question from a different angle by asking how important certain arms of the mosquito's immune response are for fighting dengue infection. We will do this by looking at what happens to the virus when we grow it in mosquito cells that lack these parts of the immune response. These first two goals will be researched using cells taken from mosquitoes, which are easy to work with in the lab and useful for finding out the fine details of how dengue virus hides from the mosquito immune system. However, we cannot use these cells to study transmission. For this reason, the third and final goal of this grant is to repeat key experiments from the first two goals in yellow fever mosquitoes in the laboratory to check that our results are relevant to what happens in an actual mosquito. There are four different strains of dengue virus, some of which behave very differently from one another, so we will also check whether our results can be extrapolated to all four dengue strains.Together, our experiments will tell us how dengue virus blocks mosquito immune responses, and how important the ability to escape certain mosquito immune responses is for the transmission of dengue virus. In the future, this information will allow us to reduce the global burden of dengue disease by making the yellow fever mosquito's immune response stronger and better able to fight dengue virus in order to prevent disease transmission.
登革热病毒是引起人类疾病的最重要的蚊媒病毒。世界上几乎一半的人口面临登革热病毒感染的风险,主要是在热带低收入和中等收入国家。每年约有4亿人受到感染,其中约有1亿例严重的流感样登革热病例和50万例更严重和可能致命的登革出血热病例。除了造成重大痛苦和生命损失以及经济生产力损失之外,登革热的主要影响是,在许多国家几乎每年都经历的流行病期间,不发达的医疗保健系统不堪重负,影响了常规和紧急医疗护理。目前还没有治疗登革热的药物,唯一获得许可的疫苗也不完善,不建议在全球范围内广泛使用。登革热病毒通过蚊子传播,不能在人类之间直接传播。当蚊子以感染者为食时,它也会感染登革热病毒。当蚊子以另一个人为食时,病毒会传播,导致第二个人感染。因此,预防通过蚊子传播是减少全球疾病负担的有效方法。通常传播登革热病毒的蚊子是“黄热病蚊子”(拉丁名埃及伊蚊)。和人类一样,蚊子也有一个免疫系统,可以保护它们免受病毒性疾病的侵害。当黄热病蚊子感染病毒时,这种蚊子的免疫反应就会开始起作用,但并不是所有的免疫系统都能够对抗登革热病毒。我们发现这是因为登革热病毒主动阻断了免疫反应的某些部分。这项拨款将研究登革热病毒如何从免疫系统的这些武器中逃脱,这是任何蚊媒病毒的第一次。最终,这将使我们能够开发出增强蚊子免疫系统的方法,以阻止它们感染登革热病毒,从而减少传播并保护人们免受登革热疾病的侵害。我们的首要目标是研究登革热病毒如何阻断蚊子的免疫反应。登革热病毒在感染蚊子时会产生10种蛋白质,我们预测其中一种蛋白质会破坏蚊子的免疫反应。我们将确定哪种蛋白质可以做到这一点,以及如何做到这一点。我们的第二个目标将从不同的角度来看待这个问题,询问蚊子免疫反应的某些分支对于对抗登革热感染有多重要。我们将通过观察病毒在缺乏这些免疫反应部分的蚊子细胞中生长时会发生什么来做到这一点。前两个目标将使用从蚊子身上提取的细胞进行研究,这些细胞很容易在实验室中使用,并且有助于找出登革热病毒如何隐藏在蚊子免疫系统中的细节。然而,我们不能用这些细胞来研究传播。出于这个原因,这项资助的第三个也是最后一个目标是在实验室中重复黄热病蚊子中前两个目标的关键实验,以检查我们的结果与实际蚊子中发生的事情相关。登革热病毒有四种不同的毒株,其中一些毒株的表现非常不同,因此我们还将检查我们的结果是否可以外推到所有四种登革热毒株。总之,我们的实验将告诉我们登革热病毒如何阻断蚊子的免疫反应,以及逃避某些蚊子免疫反应的能力对登革热病毒传播的重要性。在未来,这些信息将使我们能够通过使黄热病蚊子的免疫反应更强,更好地对抗登革热病毒,以防止疾病传播,从而减轻登革热疾病的全球负担。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Innate Immune Antagonism of Mosquito-Borne Flaviviruses in Humans and Mosquitoes.
- DOI:10.3390/v13112116
- 发表时间:2021-10-20
- 期刊:
- 影响因子:0
- 作者:Elrefaey AME;Hollinghurst P;Reitmayer CM;Alphey L;Maringer K
- 通讯作者:Maringer K
Dengue and Zika Virus Capsid Proteins Contain a Common PEX19-Binding Motif.
- DOI:10.3390/v14020253
- 发表时间:2022-01-27
- 期刊:
- 影响因子:0
- 作者:Farelo MA;Korrou-Karava D;Brooks KF;Russell TA;Maringer K;Mayerhofer PU
- 通讯作者:Mayerhofer PU
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Maringer其他文献
NS1 targets pericytes to amplify vascular leakage A Critical Role for Perivascular Cells in Amplifying Vascular Leakage Induced by 3 Virus Non-Structural Protein 1 4
NS1 靶向周细胞以放大血管渗漏 血管周围细胞在放大 3 病毒非结构蛋白诱导的血管渗漏中发挥关键作用 1 4
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Y. Cheung;V. Mastrullo;Davide Maselli;Teemapron Butsabong;Paolo;Madeddu;Kevin Maringer;Paola Campagnolo - 通讯作者:
Paola Campagnolo
Re-evaluating the mosquito RNAi pathway’s influence on arbovirus transmission
重新评估蚊子 RNAi 通路对虫媒病毒传播的影响
- DOI:
10.1016/j.pt.2023.09.005 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:6.600
- 作者:
Kevin Maringer - 通讯作者:
Kevin Maringer
Virion assembly of the herpes simplex virus type 1 E3 ubiquitin ligase ICP0
- DOI:
10.25560/9147 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kevin Maringer - 通讯作者:
Kevin Maringer
Virion Incorporation of the Herpes Simplex Virus Type 1 Tegument Protein VP22 Occurs via Glycoprotein E-Specific Recruitment to the Late Secretory Pathway
病毒粒子通过糖蛋白 E 特异性招募至晚期分泌途径来掺入 1 型单纯疱疹病毒外皮蛋白 VP22
- DOI:
10.1128/jvi.00069-09 - 发表时间:
2009 - 期刊:
- 影响因子:5.4
- 作者:
Julianna Stylianou;Kevin Maringer;R. Cook;E. Bernard;G. Elliott - 通讯作者:
G. Elliott
Aedes aegypti(Aag2)-derived clonal mosquito cell lines reveal impact of pre-existing persistent co-infection with the insect-specific Bunyavirus Phasi Charoen-like virus on arbovirus replication
埃及伊蚊 (Aag2) 衍生的克隆蚊子细胞系揭示了与昆虫特异性布尼亚病毒 Phasi Charoen 样病毒先前存在的持续共感染对虫媒病毒复制的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Ribeiro;Anthony C. Fredericks;T. Russell;Louisa Elizabeth Wallace;A. Davidson;A. Fernández;Kevin Maringer - 通讯作者:
Kevin Maringer
Kevin Maringer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Maringer', 18)}}的其他基金
Molecular Mechanism of IMD (NF-kB) Inhibition by Dengue Virus in the Mosquito Aedes Aegypti, and Implications for Transmission and Emergence
埃及伊蚊登革热病毒抑制 IMD (NF-kB) 的分子机制及其传播和出现的影响
- 批准号:
MR/R010315/1 - 财政年份:2018
- 资助金额:
$ 9.38万 - 项目类别:
Research Grant
相似国自然基金
激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
- 批准号:11104247
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Why certain viruses don't get along in mosquitoes. The molecular mechanism.
为什么某些病毒不能在蚊子体内相处。
- 批准号:
FT230100465 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
ARC Future Fellowships
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
- 批准号:
2305609 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
Fellowship Award
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
- 批准号:
23K22120 - 财政年份:2024
- 资助金额:
$ 9.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)