Geometric Representation Theory and W-algebras

几何表示理论和W代数

基本信息

  • 批准号:
    MR/S032657/3
  • 负责人:
  • 金额:
    $ 67.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

In the early nineteenth century it was impossible to draw a distinction between mathematicians and physicists, since the greatest scientists worked on every important problem in these fields. One of the most influential polymaths of the era was Emmy Noether, who developed all of the foundational theories which inspired this research project. Her greatest contribution to physics was probably Noether's first theorem, which says that if you want to understand the conservation laws of the universe then it suffices to understand the symmetries of the universe. Conservation laws are the most fundamental laws of physics, giving us clues about the nature of matter, and the shape of space, and so Noether's theorem started a wave of discovery which has been growing and growing for over a hundred years, as mathematicians and physicist seek to understand the symmetries of the universe. Today mathematicians and physicists are much easier to distinguish, however the subjects are still deeply intertwined. In modern day mathematical language, the study of symmetries is called representation theory and the goal of this project is to understand how Noether's algebraic structures can be expressed as symmetries. To rephrase this, my objective is to understand the representations of certain important families of algebras.The ancient Greeks believed that all matter could be built up from indivisible pieces - the word "atom" literally means "indivisible" - and in the language of modern particle physics it is well-understood that all matter in the universe can be built up from the fundamental particles. In precisely the same way, the representations I seek to understand are also built from fundamental building blocks, known as irreducible representations. Can we describe these irreducible representations explicitly? Can we determine their structure and calculate their dimensions? In this research project we will answer these fundamental, elusive questions by relating each representation to an important geometric space, known as a symplectic leaf of a Poisson variety.Some of the most important unanswered questions in this field pertain to algebras which we call "modular": this is because the underlying number system is not linear, like the real number line, but is circular like the numbers on the face of a clock. Questions in modular representation theory tend to be significantly harder due to the added complexity of the geometry and the arithmetic.By working with tools on the interface between abstract algebra and geometry this project will make substantial exciting progress in some of the most challenging problems in modular representation theory, showing that Noether's wave of discovery is still growing on the ocean of mathematics.
在世纪早期,要区分数学家和物理学家是不可能的,因为最伟大的科学家都在研究这些领域的每一个重要问题。那个时代最有影响力的博学者之一是Emmy Noether,他开发了激发这个研究项目的所有基础理论。她对物理学的最大贡献可能是诺特的第一定理,它说,如果你想了解宇宙的守恒定律,那么它足以了解宇宙的对称性。守恒定律是物理学最基本的定律,给我们提供了关于物质性质和空间形状的线索,因此诺特定理引发了一波发现的浪潮,一百多年来,随着数学家和物理学家寻求理解宇宙的对称性,这一浪潮一直在增长和增长。今天,数学家和物理学家更容易区分,但这些学科仍然深深地交织在一起。在现代数学语言中,对称性的研究被称为表示论,这个项目的目标是了解Noether的代数结构如何被表示为对称性。换句话说,我的目标是理解某些重要的代数族的表示。古希腊人认为,所有物质都可以由不可分割的碎片组成--“原子”一词的字面意思是“不可分割的”--而在现代粒子物理学的语言中,人们很好地理解,宇宙中的所有物质都可以由基本粒子组成。同样,我试图理解的表征也是由基本的构建模块构建而成的,这些模块被称为不可约表征。我们能明确地描述这些不可约表示吗?我们能确定它们的结构并计算它们的尺寸吗?在这个研究项目中,我们将回答这些基本的,难以捉摸的问题,通过将每个表示与一个重要的几何空间相关联,称为泊松簇的辛叶。在这个领域中,一些最重要的未回答的问题与我们称之为“模”的代数有关:这是因为基本的数字系统不像真实的数字线那样是线性的,而是像钟面上的数字那样是圆形的。由于几何和算术的复杂性,模块化表示理论中的问题往往会变得更加困难。通过使用抽象代数和几何之间接口的工具,该项目将在模块化表示理论中一些最具挑战性的问题上取得令人兴奋的进展,表明Noether的发现浪潮仍在数学的海洋上增长。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Category for truncated current Lie algebras
截断电流李代数类别
Universal filtered quantizations of nilpotent Slodowy slices
幂零 Slodowy 切片的通用滤波量化
One dimensional representations of finite $W$-algebras, Dirac reduction and the orbit method
有限$W$-代数的一维表示、狄拉克约简和轨道方法
  • DOI:
    10.1007/s00222-023-01215-3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Topley L
  • 通讯作者:
    Topley L
Modular representations of Lie algebras of reductive groups and Humphreys' conjecture
还原群李代数的模表示和汉弗莱斯猜想
  • DOI:
    10.1016/j.aim.2021.108024
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Premet A
  • 通讯作者:
    Premet A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lewis Topley其他文献

On the Semi-centre of a Poisson Algebra
  • DOI:
    10.1007/s10468-019-09879-3
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Cesar Lecoutre;Lewis Topley
  • 通讯作者:
    Lewis Topley
Shifted twisted Yangians and Slodowy slices in classical Lie algebras
经典李代数中的平移扭曲 Yangians 和 Slodowy 切片
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lukas Tappeiner;Lewis Topley
  • 通讯作者:
    Lewis Topley

Lewis Topley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lewis Topley', 18)}}的其他基金

Geometric Representation Theory and W-algebras
几何表示理论和W代数
  • 批准号:
    MR/S032657/2
  • 财政年份:
    2020
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Fellowship
Geometric Representation Theory and W-algebras
几何表示理论和W代数
  • 批准号:
    MR/S032657/1
  • 财政年份:
    2020
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Fellowship

相似海外基金

Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
  • 批准号:
    2416129
  • 财政年份:
    2024
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Standard Grant
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
  • 批准号:
    23K03067
  • 财政年份:
    2023
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Geometric representation theory and moduli spaces
会议:几何表示理论和模空间
  • 批准号:
    2328483
  • 财政年份:
    2023
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Standard Grant
Geometric representation theory and crystals
几何表示理论和晶体
  • 批准号:
    RGPIN-2018-04713
  • 财政年份:
    2022
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2022
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric representation theory and crystals
几何表示理论和晶体
  • 批准号:
    RGPIN-2018-04713
  • 财政年份:
    2022
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric representation theory and crystals
几何表示理论和晶体
  • 批准号:
    522588-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Modular representation theory, Hilbert modular forms and the geometric Breuil-Mézard conjecture.
模表示理论、希尔伯特模形式和几何布勒伊-梅扎德猜想。
  • 批准号:
    EP/W001683/1
  • 财政年份:
    2022
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Fellowship
Geometric Methods in Representation Theory and the Langlands Program
表示论中的几何方法和朗兰兹纲领
  • 批准号:
    2101837
  • 财政年份:
    2021
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Continuing Grant
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2021
  • 资助金额:
    $ 67.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了