CalcUlating the strength of the Plastic pump In counteracting the Deep export of Oceanic carbon (CUPIDO)

计算塑料泵抵消海洋碳深度输出的强度 (CUPIDO)

基本信息

  • 批准号:
    MR/T020962/1
  • 负责人:
  • 金额:
    $ 120.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The amount of plastic entering our oceans is increasing (8 million tonnes p.a.) with global implications for the health of our planet. As this plastic debris degrades in the ocean, fragmentation will shift particle size from large plastics to smaller microplastics, even in the absence of any new inputs. Thus, the problem of microplastic pollution will only increase in future years. However, the ways in which microplastics are transported to the deep ocean are still largely unknown. This limits our ability to determine the impacts of plastic debris on the ocean ecosystem and how these can be alleviated. Microplastic debris interact with dynamic communities of zooplankton. These small organisms, which are at the base of marine food chains, ingest microplastics and repackage them into faecal pellets which may become deposited deep in the ocean over the cycle of diel vertical migration. Microplastics may also become incorporated into zooplankton body tissue which, at the end of life, will sink as part of the carcass. I am introducing a new concept of the "Plastic Pump", to collectively describe the process of incorporation of plastics into biological processes and their subsequent movement to depth. The Plastic Pump may interacts with the biological capability of the ocean to export carbon from the surface to depth (a process known as Biological Carbon Pump, BCP). Further elucidation of the interaction between the Plastic Pump and the BCP is important since the BCP provides a critical ecosystem service in mitigating climate change through uptaking and storing anthropogenically-derived atmospheric CO2 in the deep ocean. Interference by the Plastic Pump may reduce the effectiveness of the BCP. This has yet to be determined.CUPIDO will undertake two cruise expeditions where a suite of cutting edge approaches, at the intersection of biogeochemistry, material science, and biology, will be used. These approaches include floating and moored platforms that will not only determine depth profiles of plastic concentrations over seasons, but also how plastics interact with the natural ecosystem over these depths. It will also deploy a unique device, built in-house to my own design and specifications, to evaluate how oceanic plastics alter over long time scales through incubating pre-selected meso- and microplastics in in situ conditions. CUPIDO will focus on two regions located in the Southern Ocean (SO) and the Mediterranean Sea (MS). The contrasting conditions of the two selected regions (relatively pristine vs. highly polluted) allow for a comparative analysis of the impact of the Plastic Pump on the ocean's ability to export and sequester C within a low (SO) and high (MS) plastic input regime. My CUPIDO team will measure how the characteristics of plastics alter as a function of exposure to the marine environment; the vertical distribution and export of plastic over daily and seasonal timescales, and the role of zooplankton as vectors of plastics through the water column. This wealth of novel data will be analysed and modelled to predict: (i) the accumulation of plastics in specific water layers through the water column and (ii) how the flux of plastics and C alters over an annual cycle in regions of high and low plastic debris input. Overall, CUPIDO will address the hypothesis that zooplankton and food web associated processes play a major role in promoting the sinking of plastic through the water column. These mechanisms will decrease the ability of the marine ecosystem to transfer C from the surface to the deep ocean (resulting in a slowing of the BCP). The service provided by the BCP in lowering atmospheric CO2 levels has an economic significance to the mitigation of climate change. Through parameterising the various components of the Plastic Pump, CUPIDO will assess the economic impact of microplastic debris on the BCP and the value of combatting marine plastic pollution to restore levels of climate change mitigation.
进入海洋的塑料数量正在增加(每年800万吨)对我们星球的健康产生全球性影响。随着这些塑料碎片在海洋中降解,即使没有任何新的投入,碎片也会将颗粒大小从大塑料转变为较小的微塑料。因此,微塑料污染问题在未来几年只会增加。然而,微塑料被运输到深海的方式在很大程度上仍然是未知的。这限制了我们确定塑料碎片对海洋生态系统的影响以及如何减轻这些影响的能力。微塑料碎片与浮游动物的动态群落相互作用。这些小生物位于海洋食物链的基础,它们摄取微塑料并将其重新包装成粪便颗粒,这些粪便颗粒可能在昼夜垂直迁移的周期中沉积在海洋深处。微塑料也可能被纳入浮游动物的身体组织中,在生命结束时,这些组织将作为尸体的一部分下沉。我介绍了一个新的概念“塑料泵”,共同描述的过程中纳入塑料的生物过程和随后的运动的深度。塑料泵可能与海洋的生物能力相互作用,将碳从表面输出到深度(称为生物碳泵,BCP)。进一步阐明塑料泵和BCP之间的相互作用非常重要,因为BCP通过在深海中吸收和储存生物来源的大气CO2,在减缓气候变化方面提供了关键的生态系统服务。塑料泵的干扰可能会降低BCP的有效性。CUPIDO将进行两次巡航考察,其中将使用一套尖端方法,在地球化学,材料科学和生物学的交叉点。这些方法包括浮动和系泊平台,不仅可以确定塑料浓度随季节变化的深度分布,还可以确定塑料如何与这些深度的自然生态系统相互作用。它还将部署一个独特的设备,根据我自己的设计和规格在内部建造,以评估海洋塑料如何通过在原位条件下孵育预先选择的中微塑料而在长时间内发生变化。CUPIDO将专注于位于南大洋(SO)和地中海(MS)的两个区域。两个选定区域(相对原始与高度污染)的对比条件允许比较分析塑料泵对海洋在低(SO)和高(MS)塑料输入制度下输出和隔离C的能力的影响。我的CUPIDO团队将测量塑料的特性如何随着暴露于海洋环境而变化;塑料在日常和季节性时间尺度上的垂直分布和出口,以及浮游动物作为塑料载体通过水柱的作用。将对这些丰富的新数据进行分析和建模,以预测:(i)塑料通过水柱在特定水层中的积累,以及(ii)塑料和C的通量在高和低塑料碎片输入区域的年度周期内如何变化。总体而言,CUPIDO将解决浮游动物和食物网相关过程在促进塑料通过水柱下沉方面发挥重要作用的假设。这些机制将降低海洋生态系统将碳从表层转移到深海的能力(导致BCP减缓)。BCP在降低大气CO2水平方面提供的服务对减缓气候变化具有经济意义。通过对塑料泵的各个组件进行参数化,CUPIDO将评估微塑料碎片对BCP的经济影响,以及对抗海洋塑料污染以恢复缓解气候变化水平的价值。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scoping intergenerational effects of nanoplastic on the lipid reserves of Antarctic krill embryos.
探讨纳米塑料对南极磷虾胚胎脂质储备的代际影响。
Report
The Effects of Combined Ocean Acidification and Nanoplastic Exposures on the Embryonic Development of Antarctic Krill
  • DOI:
    10.3389/fmars.2021.709763
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emily Rowlands;T. Galloway;M. Cole;C. Lewis;V. Peck;S. Thorpe;C. Manno
  • 通讯作者:
    Emily Rowlands;T. Galloway;M. Cole;C. Lewis;V. Peck;S. Thorpe;C. Manno
How Might Plastic Pollution Affect Antarctic Animals?
塑料污染如何影响南极动物?
  • DOI:
    10.3389/frym.2023.1096038
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowlands E
  • 通讯作者:
    Rowlands E
Southern Ocean Action Plan 2021-2030: In support of the United Nations Decade of Ocean Science for Sustainable Development
2021-2030年南大洋行动计划:支持联合国海洋科学促进可持续发展十年
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Annemie R. Janssen
  • 通讯作者:
    Annemie R. Janssen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clara Manno其他文献

Microplastics in Antarctica - A plastic legacy in the Antarctic snow?
南极洲的微塑料——南极雪中的塑料遗产?
  • DOI:
    10.1016/j.scitotenv.2025.178543
  • 发表时间:
    2025-02-25
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Kirstie Jones-Williams;Emily Rowlands;Sebastian Primpke;Tamara Galloway;Matthew Cole;Claire Waluda;Clara Manno
  • 通讯作者:
    Clara Manno
Sediment trap illustrates taxon-specific seasonal signals in Southern Ocean zooplankton
  • DOI:
    10.1007/s00227-024-04487-2
  • 发表时间:
    2024-08-07
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Florence Atherden;Angelika Slomska;Clara Manno
  • 通讯作者:
    Clara Manno
Microplastic hotspots mapped across the Southern Ocean reveal areas of potential ecological impact
  • DOI:
    10.1038/s41598-024-79816-y
  • 发表时间:
    2024-12-30
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Aidan Hunter;Sally E. Thorpe;Arlie H. McCarthy;Clara Manno
  • 通讯作者:
    Clara Manno
The Ocean Plastic Incubator Chamber (OPIC) system to monitor emin situ/em plastic degradation at sea
  • DOI:
    10.1016/j.envpol.2022.119868
  • 发表时间:
    2022-10-15
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Elisa Bergami;Bjorg Apeland;Rad Sharma;Peter Enderlein;Clara Manno
  • 通讯作者:
    Clara Manno

Clara Manno的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clara Manno', 18)}}的其他基金

Processes Influencing Carbon Cycling: Observations of the Lower limb of the Antarctic Overturning (PICCOLO)
影响碳循环的过程:南极翻转下肢的观测(PICCOLO)
  • 批准号:
    NE/P021352/1
  • 财政年份:
    2017
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Research Grant

相似国自然基金

高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Continuing Grant
High-Pressure Pore Water Experiments and Nanograin Reaction and Mechanical Properties for Revealing Brittle-Plastic Strength of the Crust
高压孔隙水实验以及纳米颗粒反应和力学性能揭示地壳的脆塑性强度
  • 批准号:
    23KJ0205
  • 财政年份:
    2023
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Vildation of Evaluating Fatigue Strength of Carbon Fiber Reinforced Plastic Laminates by Using Ulatrasonic Fatigue Testing Methd
超声疲劳试验方法评价碳纤维增强塑料层压板疲劳强度的验证
  • 批准号:
    23K03572
  • 财政年份:
    2023
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ionic Graft Polymers for Both High Strength and Toughness in Plastic Materials
在塑料材料中实现高强度和高韧性的离子接枝聚合物
  • 批准号:
    23K13802
  • 财政年份:
    2023
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Plastic deformation and forming behavior of high strength aluminum alloys for automotive applications
汽车用高强度铝合金的塑性变形和成形行为
  • 批准号:
    RGPIN-2017-06293
  • 财政年份:
    2021
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Discovery Grants Program - Individual
Plastic deformation and forming behavior of high strength aluminum alloys for automotive applications
汽车用高强度铝合金的塑性变形和成形行为
  • 批准号:
    RGPIN-2017-06293
  • 财政年份:
    2020
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Discovery Grants Program - Individual
Plastic deformation and forming behavior of high strength aluminum alloys for automotive applications
汽车用高强度铝合金的塑性变形和成形行为
  • 批准号:
    RGPIN-2017-06293
  • 财政年份:
    2019
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of Ultimate Strength and Plastic Deformation Capacity of Composite Beam-Columns Considering Variable Stress Transfer between Damper and Main Structure of Vibration Damping Steel Structures
考虑减振钢结构阻尼器与主体结构间变应力传递的梁柱组合极限强度及塑性变形能力评价
  • 批准号:
    19H02280
  • 财政年份:
    2019
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Plastic strength of the crust evaluated from naturally deformed rocks
从自然变形的岩石评估地壳的塑性强度
  • 批准号:
    19K04041
  • 财政年份:
    2019
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of rigid plastic finite element method using nonlinear shear strength of soil material and quantitative analysis of design standard
利用土体材料非线性抗剪强度的刚性塑性有限元方法的发展及设计标准的定量分析
  • 批准号:
    18H01533
  • 财政年份:
    2018
  • 资助金额:
    $ 120.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了