Multiscale modelling and control of soft biological matter: Linking biomolecular interactions to macroscopic function

软生物物质的多尺度建模和控制:将生物分子相互作用与宏观功能联系起来

基本信息

  • 批准号:
    MR/V022385/1
  • 负责人:
  • 金额:
    $ 184.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Biological functions emerge from the molecules that make up cells, tissues and organisms. At high concentration, interacting biomolecules often form intermediate or mesoscopic structures that determine biological function, but the properties of these structures cannot be identified through measurements of the biochemical properties of the molecules in isolation. Mesoscopic structures formed by biomolecules with perturbed interactions, and by the actions of viruses and bacteria, have been implicated in a range of pathologies that affect millions of people worldwide, including neurodegenerative diseases, cancer, diseases of the blood, infectious diseases such as influenza, and bacterial infections. Soft matter physics, in which the aim is to provide a consistent physical description of how properties and processes at mesoscopic and macroscopic length scales emerge from molecular constituents, is a promising approach to address this biological challenge. However, this requires physical models grounded in accurate biomolecular interactions, and tools that can simulate biophysical processes across length scales.In this project, I will build a theoretical framework to predict how macroscopic biological functions emerge from the properties of mesoscopic structures formed by interacting microscopic biomolecules. I will build, validate and apply the framework in the contexts of three experimentally tractable and clinically relevant biological systems with strong underlying physical links - I have identified an international network of collaborators to perform the experiments for validation. I will achieve the following objectives:1) To connect the molecular interactions of proteins to the mesoscopic properties of biomolecular condensates and their effects on macroscopic functions in cells.A recent paradigm shift in biology has revealed that many human proteins and RNA can condense or aggregate to form liquid-, gel- or solid-like structures under cellular conditions. Biomolecular condensates, a physiological example of this process, have been implicated in diseases including neurodegenerative diseases, infectious diseases and cancer. However, it is largely unknown how physiological and pathological molecular interactions contribute to condensate functions in health and disease.2) To connect the molecular interactions of phages to the mesoscopic properties of phage droplets and their effects on macroscopic functions in bacterial biofilms.Bacterial biofilms are a leading cause of antimicrobial resistance, which is thought to cause 700,000 deaths each year globally, with a cumulative cost of $100 trillion by 2050 if no action is taken. Recent evidence suggests that viral phages expressed by various bacteria may have important effects on antibiotic resistance, but to contribute to improved treatments for the many diseases associated with such bacterial infections, we need to understand the mechanisms that confer phage-expressing bacteria with these benefits.3) To connect the molecular interactions of hemoglobin fibrils to the mesoscopic properties of fibril aggregates and their effects on macroscopic functions in sickle cell blood.Pathological biophysical dynamics of red blood cells are a hallmark of diseases of the blood that affect millions of people worldwide, including sickle cell disease (SCD). In SCD, blood increases in viscosity and may clog in deoxygenated conditions, causing death if left untreated. There is an ongoing clinical effort to develop genetic and pharmacological treatments for SCD, but we lack tools to prioritise specific treatment strategies or to clinically monitor patients and identify complications before they manifest physiologically.The specific outcomes in each biological system will have relevance to molecular diseases and bacterial infections that affect millions of people worldwide, and the general framework will be applicable to further biological systems and a vast array of diseases.
生物功能来自于构成细胞、组织和有机体的分子。在高浓度下,相互作用的生物分子通常形成决定生物功能的中间或介观结构,但这些结构的性质不能通过孤立分子的生化性质的测量来确定。受干扰的相互作用的生物分子以及病毒和细菌的作用形成的介观结构与影响全世界数百万人的一系列病理有关,包括神经退行性疾病、癌症、血液疾病、传染病(如流感)和细菌感染。软物质物理学,其目的是提供一个一致的物理描述如何在介观和宏观长度尺度上从分子成分中产生的特性和过程,是解决这一生物挑战的有希望的方法。然而,这需要以精确的生物分子相互作用为基础的物理模型,以及能够模拟跨长度尺度的生物物理过程的工具。在这个项目中,我将建立一个理论框架来预测宏观生物功能是如何从微观生物分子相互作用形成的介观结构的性质中产生的。我将在三个具有强大潜在物理联系的实验可处理和临床相关生物系统的背景下构建,验证和应用该框架-我已经确定了一个国际合作者网络来执行实验以进行验证。我将实现以下目标:1)将蛋白质的分子相互作用与生物分子凝聚物的介观特性及其对细胞宏观功能的影响联系起来。最近生物学的一个范式转变表明,在细胞条件下,许多人类蛋白质和RNA可以凝聚或聚集形成液体、凝胶或固体样结构。生物分子凝聚物是这一过程的一个生理例子,与神经退行性疾病、传染病和癌症等疾病有关。然而,生理和病理分子相互作用如何促进凝聚在健康和疾病中的作用在很大程度上是未知的。2)将噬菌体的分子相互作用与噬菌体液滴的介观特性及其对细菌生物膜宏观功能的影响联系起来。细菌生物膜是抗菌素耐药性的主要原因,据信全球每年有70万人因此死亡,如果不采取行动,到2050年累计成本将达到100万亿美元。最近的证据表明,由各种细菌表达的病毒噬菌体可能对抗生素耐药性有重要影响,但为了有助于改善与此类细菌感染相关的许多疾病的治疗,我们需要了解赋予噬菌体表达细菌这些益处的机制。3)将血红蛋白原纤维的分子相互作用与镰状细胞血液中原纤维聚集体的介观特性及其对宏观功能的影响联系起来。红细胞的病理生物物理动力学是影响全世界数百万人的血液疾病的标志,包括镰状细胞病(SCD)。在SCD中,血液粘度增加,在缺氧条件下可能堵塞,如果不及时治疗,可能导致死亡。临床正在努力开发SCD的遗传和药物治疗方法,但我们缺乏工具来优先考虑特定的治疗策略或临床监测患者并在其表现出生理症状之前识别并发症。每个生物系统的具体结果将与影响全世界数百万人的分子疾病和细菌感染相关,总体框架将适用于其他生物系统和大量疾病。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Universal dynamics of biological pattern formation in spatio-temporal morphogen variations
时空形态发生素变化中生物模式形成的普遍动力学
  • DOI:
    10.1101/2022.03.18.484904
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dalwadi M
  • 通讯作者:
    Dalwadi M
Biophysical basis of phage liquid crystalline droplet-mediated antibiotic tolerance in pathogenic bacteria
噬菌体液晶液滴介导的病原菌抗生素耐受的生物物理基础
  • DOI:
    10.1101/2022.12.13.520211
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Böhning J
  • 通讯作者:
    Böhning J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Pearce其他文献

The effect of gravity and thermal expansion on the propagation of a triple flame in a horizontal channel
  • DOI:
    10.1016/j.combustflame.2013.06.017
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Philip Pearce;Joel Daou
  • 通讯作者:
    Joel Daou
Pattern formation along signaling gradients driven by active droplet behaviour of cell groups
由细胞群的活跃液滴行为驱动的沿信号梯度的图案形成
  • DOI:
    10.1101/2024.04.08.588511
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hugh Z Ford;Giulia L Celora;Elizabeth R Westbrook;M. Dalwadi;Benjamin J Walker;Hella Baumann;Cornelis J. Weijer;Philip Pearce;Jonathan R Chubb
  • 通讯作者:
    Jonathan R Chubb
Paranormal tourism: Assessing tourists' onsite experiences
  • DOI:
    10.1016/j.tmp.2018.06.003
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chonlada Pharino;Philip Pearce;Josephine Pryce
  • 通讯作者:
    Josephine Pryce

Philip Pearce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modelling and Control of Flexible Structures Interacting with Fluids (ModConFlex)
与流体相互作用的柔性结构的建模和控制 (ModConFlex)
  • 批准号:
    EP/X032353/1
  • 财政年份:
    2023
  • 资助金额:
    $ 184.48万
  • 项目类别:
    Research Grant
Modelling and Control of Flexible Structures Interacting with Fluids (ModConFlex)
与流体相互作用的柔性结构的建模和控制 (ModConFlex)
  • 批准号:
    EP/X032477/1
  • 财政年份:
    2023
  • 资助金额:
    $ 184.48万
  • 项目类别:
    Research Grant
Mapping heterogeneity of brain microstructural abnormalities in psychiatric disorders with normative modelling
通过规范模型绘制精神疾病中大脑微结构异常的异质性
  • 批准号:
    10658680
  • 财政年份:
    2023
  • 资助金额:
    $ 184.48万
  • 项目类别:
Modelling and Control of Flexible Structures Interacting with Fluids (ModConFlex)
与流体相互作用的柔性结构的建模和控制 (ModConFlex)
  • 批准号:
    EP/X033597/1
  • 财政年份:
    2023
  • 资助金额:
    $ 184.48万
  • 项目类别:
    Research Grant
Modelling, predicting and risk assessment of mpox (monkeypox) and other (re)emerging zoonotic threats to inform decision-making and public health actions: mathematical, geospatial and machine learning approaches
对mpox(猴痘)和其他(重新)出现的人畜共患威胁进行建模、预测和风险评估,为决策和公共卫生行动提供信息:数学、地理空间和机器学习方法
  • 批准号:
    481139
  • 财政年份:
    2023
  • 资助金额:
    $ 184.48万
  • 项目类别:
    Operating Grants
Mathematical control theory for mirorobot and cell locomotion
微型机器人和细胞运动的数学控制理论
  • 批准号:
    22KF0197
  • 财政年份:
    2023
  • 资助金额:
    $ 184.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Crystallisation optimisation and control using surrogate modelling and adaptive model predictive control
使用代理建模和自适应模型预测控制进行结晶优化和控制
  • 批准号:
    2746484
  • 财政年份:
    2022
  • 资助金额:
    $ 184.48万
  • 项目类别:
    Studentship
Data-centric Real-time Power System Modelling, Monitoring, and Control
以数据为中心的实时电力系统建模、监测和控制
  • 批准号:
    RGPIN-2016-04271
  • 财政年份:
    2022
  • 资助金额:
    $ 184.48万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling and Control for the Advancement of Biologics
生物制品进步的建模和控制
  • 批准号:
    580551-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 184.48万
  • 项目类别:
    Alliance Grants
Non-linear material modelling and control of piezoelectric actuators and sensors
压电致动器和传感器的非线性材料建模和控制
  • 批准号:
    571591-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 184.48万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了