Precision Modelling of Cortical Variation and its Association with Neurological/Psychiatric disease
皮质变异的精确建模及其与神经/精神疾病的关系
基本信息
- 批准号:MR/V03832X/1
- 负责人:
- 金额:$ 68.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this proposal is to develop a novel medical imaging support tool to significantly improve rates of detection, of types of subtle brain abnormality, which give rise to complex brain conditions. Specifically, we are seeking to develop tools that improve the accuracy with which we can compare brain scans across populations. This will make it much easier to tell the difference between healthy and atypical brains, or detect diseased tissue.The reason that this is challenging is because brains are extremely complex, made of billions of cells, and each one can look very different. This makes it hard to build a single model of what "healthy" brains should look like, and as a result it becomes very difficult to spot evidence of disease.These challenges mean that radiologists require years of experience, reviewing countless examples, before they can reliably spot subtle brain abnormalities, and even so, for diseases such as focal childhood epilepsies, up to 30% of cases evade detection. For similar reasons, automated tools often also struggle: appearance of scans varies so extensively that simplifying assumptions must be made leading to coarse solutions.The largest assumption is that all brains share a common organisational blueprint, where areas of the brain responsible for different functions appear in the same order. Such that if each brain scan was a jigsaw, with each piece a region, the shapes might change but they would in go together in the same way. However, in reality brains vary topographically, which means that areas representing different functions (such as language) can swap location. Methods assuming otherwise end up comparing completely different areas of the brain across individuals. Each area may look very different, with different definitions of what is normal. As a result, this leads to confusion, limiting the ability of any method to detect signs of disease.In the past, methods were particularly limited as they built their model of regional organisation based simply on patterns of brain folding. However, it turns out that shape is a fairly coarse and non-specific model of brain organisation, and that brains often have very different patterns of brain folding for the same functional region.Recently we developed a novel open-access tool, which instead learns how to map brains onto a model which takes into account, not just shape but also function, and other aspects of brain organisation (Robinson Neuroimage 2014, 2018). This has led to new, more accurate, models of cortical organisation (Glasser Nature 2016) and development (Garcia PNAS 2018, O'Muircheartaigh Brain 2020) and improved understanding of the links between brain organisation and behaviour (Bijsterbosch Elife 2018).Now we propose to extend this tool, to account for variation of brain shape and appearance in a way that reflects the natural variation seen from one individual to another. Rather than learn a single model of brain organisation we will learn a family of models (modes) that try to describe how our brains vary. These will capture all biologically relevant modes of variation, allowing individual brain scans to be compared, for a given location, only against others with a common organisational blueprint. In this way we will support much more detailed comparison, than was ever possible before.We will validate the power of the approach through three studies: 1) finding the source of epileptic seizures in the brain (to support surgical planning); 2) predicting cognitive outcomes for babies with developmental brain conditions; 3) identifying biological markers in the brain that may help predict mental health conditions. Ultimately, these tools will support researchers, medical doctors and healthcare workers to build more sensitive predictive models, fine tuned to detect signs of abnormality within individual brains. This will improve screening detection rates and lead to more accurate diagnosis of all brain conditions.
该提案的目的是开发一种新的医学成像支持工具,以显着提高检测率,微妙的大脑异常类型,引起复杂的大脑状况。具体来说,我们正在寻求开发工具,以提高我们可以在人群中比较大脑扫描的准确性。这将使区分健康和非典型大脑或检测病变组织变得更加容易。这是具有挑战性的原因,因为大脑非常复杂,由数十亿个细胞组成,每个细胞看起来都非常不同。这就使得建立一个单一的模型来描述“健康”的大脑应该是什么样的变得非常困难,结果是发现疾病的证据变得非常困难。这些挑战意味着放射科医生需要多年的经验,审查无数的例子,才能可靠地发现细微的大脑异常,即使如此,对于像儿童局灶性癫痫这样的疾病,高达30%的病例逃避检测。出于类似的原因,自动化工具通常也会遇到困难:扫描的外观差异如此之大,以至于必须做出简化的假设,从而得出粗略的解决方案。最大的假设是,所有大脑都有一个共同的组织蓝图,负责不同功能的大脑区域以相同的顺序出现。如果每一张大脑扫描图都是一张拼图,每一块都是一个区域,形状可能会改变,但它们会以同样的方式组合在一起。然而,在现实中,大脑在地形上是不同的,这意味着代表不同功能(如语言)的区域可以交换位置。其他假设的方法最终会比较个体之间完全不同的大脑区域。每个区域可能看起来非常不同,对正常的定义也不同。因此,这导致了混乱,限制了任何方法检测疾病迹象的能力。在过去,方法特别有限,因为它们仅仅基于大脑折叠的模式建立了区域组织模型。然而,事实证明,形状是一个相当粗糙和非特异性的大脑组织模型,大脑通常有非常不同的模式,大脑折叠相同的功能区域。最近,我们开发了一种新的开放式工具,它学会了如何将大脑映射到一个模型上,这个模型不仅考虑了形状,还考虑了功能和大脑组织的其他方面(罗宾逊神经影像2014,2018)。这导致了新的、更精确的大脑皮层组织模型的产生(Glasser Nature 2016)和发展(Garcia PNAS 2018,O 'Muircheartaigh Brain 2020)并提高对大脑组织与行为之间联系的理解(Bijsterbosch Elife 2018)。现在我们建议扩展此工具,来解释大脑形状和外观的变化,以反映从一个人到另一个人的自然变化。我们将学习一系列试图描述我们大脑如何变化的模型(模式),而不是学习一个单一的大脑组织模型。这些技术将捕捉到所有与生物学相关的变异模式,允许对特定地点的个体大脑扫描进行比较,只与具有共同组织蓝图的其他人进行比较。我们将通过三项研究来验证这种方法的有效性:1)在大脑中找到癫痫发作的来源(以支持手术计划); 2)预测患有发育性大脑疾病的婴儿的认知结果; 3)识别大脑中可能有助于预测心理健康状况的生物标记物。最终,这些工具将支持研究人员、医生和医护人员建立更敏感的预测模型,并进行微调,以检测个体大脑中的异常迹象。这将提高筛查检测率,并导致对所有脑部疾病的更准确诊断。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emma Robinson其他文献
Wind power forecasting based on a novel gated recurrent neural network model
- DOI:
10.1016/j.weer.2024.100004 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Shuo Zhang;Emma Robinson;Malabika Basu - 通讯作者:
Malabika Basu
Reversing aberrant phase transitions of ALS-linked disease protein FUS with RNA
- DOI:
10.1016/j.bpj.2023.11.1369 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Jenny L. Carey;Emma Robinson;James Shorter;Lin Guo - 通讯作者:
Lin Guo
FRI348 - Suboptimal follow-up, high re-infection, and drug-related death, among HCV-treated people who inject drugs in Tayside, Scotland
FRI348 - 苏格兰泰赛德地区接受 HCV 治疗的注射毒品者中随访欠佳、再感染率高和与药物相关的死亡情况
- DOI:
10.1016/s0168-8278(22)01450-7 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:33.000
- 作者:
Christopher Byrne;Lewis Beer;Sarah Inglis;Emma Robinson;Andrew Radley;Sharon Hutchinson;David Goldberg;Matthew Hickman;John Dillon - 通讯作者:
John Dillon
The impact of age and stage on the competing risk of cancer-related and non-cancer death in low- or high-grade endometrioid endometrial carcinoma and uterine serous carcinoma
- DOI:
10.1016/s0090-8258(21)01210-5 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Cassandra Presti;Chunqiao Tian;Emma Robinson;Tahimi Gonzalez;Chad Hamilton;John Chan;Annette Bicher;Craig Shriver;Nicholas Bateman;Thomas Conrads;Yovanni Casablanca;George Maxwell;Kathleen Darcy - 通讯作者:
Kathleen Darcy
Preclinical animal models and assays of neuropsychiatric disorders: Old problems and New Vistas - introduction to the special issue.
神经精神疾病的临床前动物模型和分析:老问题和新前景 - 特刊介绍。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Stanley Floresco;Angela C Roberts;Emma Robinson;D. Pizzagalli - 通讯作者:
D. Pizzagalli
Emma Robinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emma Robinson', 18)}}的其他基金
Could Ultrasonic Vocalisations Provide The Elusive, Graded Measure Of Affective State Needed To Inform Refinements For The Laboratory Rat?
超声波发声能否提供难以捉摸的、分级的情感状态测量,以通知实验室老鼠的改进?
- 批准号:
NC/Y00082X/1 - 财政年份:2023
- 资助金额:
$ 68.44万 - 项目类别:
Research Grant
Investigating serotonergic modulation of affective biases and emotional behaviour in rodents using psychedelic drugs
使用迷幻药物研究啮齿类动物情感偏见和情绪行为的血清素调节
- 批准号:
BB/V015028/1 - 财政年份:2021
- 资助金额:
$ 68.44万 - 项目类别:
Research Grant
Do male mice prefer to live on their own?
雄性老鼠喜欢独居吗?
- 批准号:
NC/T001380/1 - 财政年份:2019
- 资助金额:
$ 68.44万 - 项目类别:
Research Grant
Investigating the neural circuits and molecular mechanisms which regulate emotional behaviour and cognitive affective bias
研究调节情绪行为和认知情感偏差的神经回路和分子机制
- 批准号:
BB/N015762/1 - 财政年份:2016
- 资助金额:
$ 68.44万 - 项目类别:
Research Grant
The neurobiology of cognitive affective biases in depression and their role in antidepressant therapy
抑郁症认知情感偏差的神经生物学及其在抗抑郁治疗中的作用
- 批准号:
MR/L011212/1 - 财政年份:2014
- 资助金额:
$ 68.44万 - 项目类别:
Research Grant
Investigating the role of neuropsychological processes in stress induced negative affective states and assocaited behaviour
研究神经心理过程在压力引起的消极情感状态和相关行为中的作用
- 批准号:
BB/L009137/1 - 财政年份:2014
- 资助金额:
$ 68.44万 - 项目类别:
Research Grant
Noradrenergic mechanisms in attention and response inhibition
注意力和反应抑制中的去甲肾上腺素能机制
- 批准号:
G0700980/1 - 财政年份:2008
- 资助金额:
$ 68.44万 - 项目类别:
Research Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
EU-Funded
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
- 批准号:
10097766 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
Collaborative R&D
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
- 批准号:
10071797 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
Collaborative R&D
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
Collaborative R&D
Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
- 批准号:
DP240101009 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
Discovery Projects
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
Fellowship
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
- 批准号:
MR/Y019601/1 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
Fellowship
Modelling the impact of geomagnetically induced currents on UK railways
模拟地磁感应电流对英国铁路的影响
- 批准号:
NE/Y001176/1 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
$ 68.44万 - 项目类别:
Fellowship














{{item.name}}会员




