New adaptive platform designs for clinical trials in an emerging disease epidemic
用于新兴疾病流行病临床试验的新适应性平台设计
基本信息
- 批准号:MR/V038419/1
- 负责人:
- 金额:$ 53.07万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Before they are made available for general use in the population, drugs are evaluated in clinical trials to determine that they are safe and effective. The planning of these clinical trials to ensure they are able to provide definitive answers usually takes many months, with decisions being carefully depending on the drugs to be tested, the number of patients to be included, the trial duration required to recruit this number of patients and the data collected to assess whether or not the drugs work as hoped. When a new disease, such as COVID-19, emerges, there is a both a desire to start clinical trials as soon as possible and considerable uncertainty over exactly how these trials should proceed. The number of people likely to be infected, the best way to measure treatment effectiveness in the new disease, and even the best treatments to test, may all be unknown. A useful approach in such a setting is an adaptive design. This allows a clinical trial, once started, to be modified in a number of ways. One type of adaptive design is a platform trial design, in which additional drugs can be included after the trial has commenced, possibly at the same time as drugs previously under investigation are dropped from the trial if the data suggest that they are not sufficiently promising, giving considerable flexibility. Although such designs are not new, a number of statistical questions remain over the best approach to ensure that the risk of erroneously indicating that a new drug is effective, is kept acceptably low. Additionally, previously proposed methods do not usually provide the level of flexibility desired for clinical trials in an emerging disease. An adaptive trial can be stopped if the conclusions of the trial are sufficiently clear. In order to control the type I error rate, however, most trial designs require the maximum number of patients that can be included in the trial to be specified in advance. In most disease settings, this presents no challenge as there is good information on the number of patients likely to be recruited. This is in contrast to the setting of an emerging disease, when there can be considerable uncertainty regarding the extent and duration of an epidemic. In this case it might be desirable to continue to recruit as many patients as possible while an outbreaks persists. Similar uncertainty can exist regarding the number of experimental treatments that might be available to be tested in a platform trial, with type I error rate control using existing methods again requiring this to be specified in advance. Standard methods for clinical trial design and analysis require specification in advance of a primary endpoint used for the evaluation of experimental treatments. In an emerging disease, there may be uncertainty regarding the best endpoint, and it might be desirable to plan and start a clinical trial based on one endpoint, but to modify this as the trial progresses based on data from the trial as well as information from external sources.This project will develop novel statistical methods to solve the three challenges of uncertainty over the number of patients, the number and timing of treatments to be evaluated, and the best endpoint to be used in the evaluation. This will provide valid analysis methods for clinical trials that have the flexibility needed to enable clinical investigators to adapt the trials in reaction to new knowledge in a developing epidemic setting. To ensure that the methods we develop are widely disseminated and have maximum impact on clinical trial practice, we will organise a workshop with key stakeholders including clinicians with expertise in emerging infectious diseases, clinical trialists with experience in this area, statisticians with expertise in adaptive trial designs, and relevant regulatory body representatives. Finally, we will produce a webinar to for patients and the general public to explain platform designs for clinical trials.
在药物在人群中普遍使用之前,需要通过临床试验对其进行评估,以确定它们的安全性和有效性。为确保能够提供明确答案而进行的临床试验规划通常需要数月的时间,并根据要测试的药物、要纳入的患者数量、招募这些患者数量所需的试验持续时间以及评估药物是否按预期发挥作用而收集的数据仔细做出决定。当出现一种新疾病(例如 COVID-19)时,人们既希望尽快开始临床试验,又对这些试验应如何进行存在很大的不确定性。可能被感染的人数、衡量新疾病治疗效果的最佳方法,甚至是要测试的最佳治疗方法,都可能是未知的。在这种情况下,一种有用的方法是自适应设计。这使得临床试验一旦开始就可以通过多种方式进行修改。适应性设计的一种类型是平台试验设计,其中可以在试验开始后纳入额外的药物,如果数据表明它们没有足够的前景,可能同时将之前正在研究的药物从试验中删除,从而提供了相当大的灵活性。尽管这样的设计并不新鲜,但对于确保错误表明新药有效的风险保持在可接受的低水平的最佳方法,仍然存在许多统计问题。此外,先前提出的方法通常不能提供新出现疾病的临床试验所需的灵活性水平。如果试验的结论足够明确,则可以停止适应性试验。然而,为了控制I型错误率,大多数试验设计都要求预先指定试验中可纳入的最大患者数量。在大多数疾病环境中,这不构成任何挑战,因为有关于可能招募的患者数量的良好信息。这与新出现疾病的情况形成鲜明对比,新出现疾病的流行程度和持续时间可能存在相当大的不确定性。在这种情况下,在疫情持续存在的情况下,可能需要继续招募尽可能多的患者。关于可在平台试验中测试的实验处理的数量也可能存在类似的不确定性,使用现有方法的 I 类错误率控制再次要求提前指定。临床试验设计和分析的标准方法需要提前指定用于评估实验治疗的主要终点。在一种新出现的疾病中,最佳终点可能存在不确定性,可能需要根据一个终点来计划和启动临床试验,但随着试验的进展,根据试验数据以及外部来源的信息来修改这一点。该项目将开发新的统计方法,以解决患者数量、待评估治疗的数量和时间以及评估中使用的最佳终点的不确定性的三个挑战。这将为临床试验提供有效的分析方法,这些方法具有所需的灵活性,使临床研究人员能够根据流行病发展中的新知识来调整试验。为了确保我们开发的方法得到广泛传播并对临床试验实践产生最大影响,我们将组织一次由主要利益相关者参加的研讨会,包括具有新发传染病专业知识的临床医生、具有该领域经验的临床试验人员、具有适应性试验设计专业知识的统计学家以及相关监管机构代表。最后,我们将为患者和公众举办一次网络研讨会,解释临床试验的平台设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Stallard其他文献
RECOVERY- Respiratory Support: Respiratory Strategies for patients with suspected or proven COVID-19 respiratory failure; Continuous Positive Airway Pressure, High-flow Nasal Oxygen, and standard care: A structured summary of a study protocol for a randomised controlled trial
- DOI:
10.1186/s13063-020-04617-3 - 发表时间:
2020-07-29 - 期刊:
- 影响因子:2.000
- 作者:
Gavin D. Perkins;Keith Couper;Bronwen Connolly;J. Kenneth Baillie;Judy M. Bradley;Paul Dark;Anthony De Soyza;Ellen Gorman;Alasdair Gray;Louisa Hamilton;Nicholas Hart;Chen Ji;Ranjit Lall;Nicola McGowan;Scott Regan;Anita K. Simonds;Emma Skilton;Nigel Stallard;Emily Stimpson;Joyce Yeung;Daniel F. McAuley - 通讯作者:
Daniel F. McAuley
Optimal adaptive designs for acute oral toxicity assessment
- DOI:
10.1016/j.jspi.2005.08.004 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:
- 作者:
Nigel Stallard - 通讯作者:
Nigel Stallard
Practicalities of using an adaptive design for decision making within the optima trial: optimal personalized treatment of early breast cancer using multi-parameter tests
- DOI:
10.1186/1745-6215-16-s2-p212 - 发表时间:
2015-11-16 - 期刊:
- 影响因子:2.000
- 作者:
Janet Dunn;Andrea Marshall;Amy Campbell;David Cameron;Helena Earl;Iain Macpherson;Christopher Poole;Daniel Rea;Adele Francis;Victoria Harmer;Adrienne Morgan;Nigel Stallard;Andreas Makris;Luke Hughes-Davies;Robert Stein - 通讯作者:
Robert Stein
THE MS-SMART TRIAL IN SECONDARY PROGRESSIVE MULTIPLE SCLEROSIS: A MULTI-ARM, MULTI-CENTRE TRIAL OF NEUROPROTECTION
继发性进行性多发性硬化症的 MS-SMART 试验:多臂、多中心神经保护试验
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:11
- 作者:
Jeremy Chataway;Siddharthan Chandran;David Miller;G. Giovannoni;Claudia Wheeler;Sue Pavitt;Nigel Stallard;Clive Hawkins;B. Sharrack - 通讯作者:
B. Sharrack
How do hospital professionals involved in a randomised controlled trial perceive the value of genotyping vs. PCR-ribotyping for control of hospital acquired C. difficile infections?
- DOI:
10.1186/1471-2334-14-154 - 发表时间:
2014-03-21 - 期刊:
- 影响因子:3.000
- 作者:
Ala Szczepura;Susan Manzoor;Katherine Hardy;Nigel Stallard;Helen Parsons;Savita Gossain;Peter M Hawkey - 通讯作者:
Peter M Hawkey
Nigel Stallard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Stallard', 18)}}的其他基金
Statistical methods for interrupted clinical trials
中断临床试验的统计方法
- 批准号:
MR/W021013/1 - 财政年份:2022
- 资助金额:
$ 53.07万 - 项目类别:
Research Grant
Using Surrogate Endpoints for Decision-Making in Adaptive Seamless Designs
在自适应无缝设计中使用代理端点进行决策
- 批准号:
G1001344/1 - 财政年份:2011
- 资助金额:
$ 53.07万 - 项目类别:
Research Grant
相似国自然基金
下一代无线通信系统自适应调制技术及跨层设计研究
- 批准号:60802033
- 批准年份:2008
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
由蝙蝠耳轮和鼻叶推导新型仿生自适应波束模型的研究
- 批准号:10774092
- 批准年份:2007
- 资助金额:39.0 万元
- 项目类别:面上项目
相似海外基金
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
- 批准号:
MR/X030261/1 - 财政年份:2024
- 资助金额:
$ 53.07万 - 项目类别:
Research Grant
A platform for multifaceted climate-adaptive building envelopes
多方面的气候适应性建筑围护结构平台
- 批准号:
IM240100048 - 财政年份:2024
- 资助金额:
$ 53.07万 - 项目类别:
Mid-Career Industry Fellowships
Adaptive platform trialを用いた臨床研究基盤構築によるARDSの人工呼吸戦略の検討
通过使用自适应平台试验构建临床研究基础设施来检查 ARDS 的人工通气策略
- 批准号:
24K12148 - 财政年份:2024
- 资助金额:
$ 53.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engagement and Planning for the Canadian Right Ventricular Adaptive Platform Trial
加拿大右心室自适应平台试验的参与和规划
- 批准号:
480761 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Miscellaneous Programs
Development of an adaptive platform trial to prevent Rheumatoid Arthritis in partnership with First Nations People.
与原住民合作开发预防类风湿关节炎的适应性平台试验。
- 批准号:
491810 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Operating Grants
Evaluating social interventions to reduce health inequities using an adaptive platform trial situated in Canadian primary care practice-based research networks
使用加拿大初级保健实践研究网络中的适应性平台试验评估社会干预措施,以减少健康不平等
- 批准号:
481607 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Operating Grants
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Standard Grant
Technology Assisted Treatment for Binge Eating Behavior
暴食行为的技术辅助治疗
- 批准号:
10603975 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
A modular cell therapy platform for controlling immunological tolerance
用于控制免疫耐受的模块化细胞治疗平台
- 批准号:
10725007 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
A Uniquely Scalable Approach to Sequence Tens of Millions of Single Cells Without Compromising Performance
一种独特的可扩展方法,可在不影响性能的情况下对数千万个单细胞进行测序
- 批准号:
10700398 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别: