Geostatistical design and analysis of randomised evaluations with a geographic basis
基于地理的随机评估的地统计设计和分析
基本信息
- 批准号:MR/V038591/1
- 负责人:
- 金额:$ 61.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Studies that randomly allocate individual people to receive a treatment or an alternative comparator allow us to estimate what does and does not happen when patients receive a treatment and hence estimate its effect. The success of the randomised study has led to the development of studies that instead randomise groups of people, or "clusters", such as villages, classrooms of children, or residents of nursing homes, to receive an intervention together. Cluster-based studies are useful as in many contexts individuals in a cluster will likely be similar and interact with one another. An intervention applied to one individual in a cluster could have indirect effects on other members of that cluster, which would undermine studies that randomise individuals, but not cluster-based ones. Many randomised studies observe study participants or clusters at multiple points in time, perhaps before and after an intervention is applied. In the statistical literature, there has been a lot of analysis about how to deal with how the data we capture changes over time - things are likely to be less similar the further apart in time they're measured, for example. Capturing the effects of time is important to making sure our studies are designed well and analysed properly. However, for randomised studies there has been little analysis about how to deal with data varying over space - the closer things are the more similar they are likely to be - and so there is little guidance on the best design when this is likely to matter.This project will consider how to design and analyse studies where a "cluster" is created based on where people live, typically by including people close to a possible intervention location. An example would be a study of the effect of installing new wells in a city in a low-income country and including people who live close to possible well locations in each cluster. In these studies, space matters. Measurements of outcomes from people who live near to one another are likely to be more similar than if they lived far apart as, for example, people can spread infectious disease to one another. However, we normally assume that it does not matter how far apart the people in a cluster are from one another nor how far from the intervention they are. While this approach does not necessarily lead to errors in the estimates of an intervention's effects, it can mean we are less precise than we need to be, requiring larger, more expensive studies. It also means we do not learn about how the effect of an intervention changes over space, an important consideration if we want to roll-out the intervention in the real-world.We will adapt methods from the field of geospatial statistics to develop methods for the spatial design and analysis of cluster trials. Explicitly accounting for space also opens up the door to a novel type of randomised study in which, instead of randomly assigning patients or clusters to receive an intervention, we randomly choose a location for an intervention. We call this a "spatial trial" and it has potential benefits for evaluating how well interventions work in places where natural clusters do not exist. For example, if a city were rolling-out new wells across the city to numerous locations.Our work is primarily statistical and consists of analysing how different statistical models work in a randomised study design. To enable the use of the new methods we will produce software that will run in standard statistical packages and provide detailed documentation and examples that we will make available online. We see particular benefit for "implementation science" research, which aims to study what happens with "real-world" interventions. Our work will aid in designing ways these interventions can be rolled out so that their effects can be reliably measured. However, any academic field that designs studies of interventions over an area will benefit, including agriculture, economics, and ecology.
随机分配个体接受治疗或替代比较的研究使我们能够估计患者接受治疗时会发生什么和不会发生什么,从而估计其效果。随机研究的成功导致了研究的发展,而不是随机分组的人,或“集群”,如村庄,儿童教室或养老院的居民,一起接受干预。基于集群的研究是有用的,因为在许多情况下,集群中的个体可能是相似的,并且相互作用。对一个群体中的一个个体进行干预可能会对该群体的其他成员产生间接影响,这将破坏随机化个体的研究,而不是基于群体的研究。许多随机研究在多个时间点观察研究参与者或集群,可能在应用干预之前和之后。在统计学文献中,有很多关于如何处理我们捕获的数据如何随时间变化的分析-例如,事情可能不太相似,因为它们被测量的时间越远。捕捉时间的影响对于确保我们的研究设计良好并进行适当的分析非常重要。然而,对于随机研究来说,几乎没有分析如何处理数据在空间上的变化--越接近的东西越可能相似--因此,当这可能很重要时,几乎没有关于最佳设计的指导。本项目将考虑如何设计和分析基于人们居住地创建“集群”的研究,通常通过包括接近可能的干预位置的人。一个例子是,研究在低收入国家的一个城市安装新的威尔斯水井的影响,并将居住在每个群组中可能的水井位置附近的人包括在内。在这些研究中,空间很重要。对居住在一起的人的结果的测量可能比居住在一起的人更相似,例如,人们可以相互传播传染病。然而,我们通常认为,集群中的人彼此相距多远,或者他们距离干预有多远都无关紧要。虽然这种方法不一定会导致对干预效果的估计错误,但它可能意味着我们不太精确,需要更大,更昂贵的研究。这也意味着我们不了解干预措施的效果如何随空间变化,如果我们想在现实世界中推广干预措施,这是一个重要的考虑因素。我们将采用地理空间统计领域的方法来开发聚类试验的空间设计和分析方法。对空间的解释也为一种新型的随机研究打开了大门,在这种研究中,我们不是随机分配患者或集群接受干预,而是随机选择一个干预的位置。我们称之为“空间试验”,它对评估干预措施在不存在自然集群的地方的效果有潜在的好处。例如,如果一个城市在城市的许多地方推广新的威尔斯井,我们的工作主要是统计,包括分析不同的统计模型如何在随机研究设计中工作。为了能够使用这些新方法,我们将制作在标准统计软件包中运行的软件,并提供详细的文件和实例,我们将在网上提供。我们看到了“实施科学”研究的特别好处,该研究旨在研究“现实世界”干预措施的效果。我们的工作将有助于设计这些干预措施的推广方式,以便能够可靠地衡量其效果。然而,任何设计对某一地区进行干预研究的学术领域都将受益,包括农业,经济学和生态学。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An individual randomised efficacy trial of autologous blood products, leukocyte and platelet-rich fibrin (L-PRF), to promote ulcer healing in leprosy in Nepal: the TABLE trial protocol.
- DOI:10.1186/s13063-021-05392-5
- 发表时间:2021-07-15
- 期刊:
- 影响因子:2.5
- 作者:Napit IB;Shrestha D;Bishop J;Choudhury S;Dulal S;Gill P;Gkini E;Gwyther H;Hagge DA;Neupane K;Sartori J;Slinn G;Watson SI;Lilford R
- 通讯作者:Lilford R
Optimal Study Designs for Cluster Randomised Trials: An Overview of Methods and Results
整群随机试验的最佳研究设计:方法和结果概述
- DOI:10.48550/arxiv.2303.07953
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Watson S
- 通讯作者:Watson S
Low cost and real-time surveillance of enteric infection and diarrhoeal disease using rapid diagnostic tests: A pilot study
使用快速诊断测试对肠道感染和腹泻病进行低成本实时监测:一项试点研究
- DOI:10.1101/2022.03.07.22271752
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Watson S
- 通讯作者:Watson S
Efficient design of geographically-defined clusters with spatial autocorrelation.
- DOI:10.1080/02664763.2021.1941807
- 发表时间:2022
- 期刊:
- 影响因子:1.5
- 作者:Watson, Samuel, I
- 通讯作者:Watson, Samuel, I
Evaluations of water, sanitation and hygiene interventions should not use diarrhoea as (primary) outcome.
- DOI:10.1136/bmjgh-2022-008521
- 发表时间:2022-05
- 期刊:
- 影响因子:8.1
- 作者:Watson, Samuel, I;Rego, Ryan T. T.;Hofer, Timothy;Lilford, Richard J.
- 通讯作者:Lilford, Richard J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Watson其他文献
https://researchopenworld.com/perinatal-and-child-mortality-under-nutrition-and-cerebral-palsy-a-cross-sectional-survey-in-rural-bangladesh/#
https://researchopenworld.com/perinatal-and-child-mortality-under-nutrition-and-cerebral-palsy-a-cross-section-survey-in-rural-bangladesh/
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
James Whitehall;Phillip Barnden;M. Rana;L. Wieland;D. Gillespie;Oliver Charlton;Me Cooper;Vedant Dave;Tom Hall;Sean Hanly;Sophie Higham;Gajanth;Sivapalan;Samantha Tripp;Gemma Walmsley;Samuel Watson;J. Whitehall - 通讯作者:
J. Whitehall
https://researchopenworld.com/maternal-nutrition-social-correlates-and-obstetric-outcomes-in-northern-mymensingh-bangladesh/#
https://researchopenworld.com/maternal-nutrition-social-correlates-and-obstetric-outcomes-in-northern-mymensingh-bangladesh/
- DOI:
10.31038/awhc.2019246 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
James Whitehall;Phillip Barnden;Mohammed M Rana;L. Wieland;D. Gillespie;Oliver Charlton;Me Cooper;Paediatrics;Vedant Dave Paediatrics;T. Hall;Sean Hanly;Sophie Higham;Amanda Macri;G. Sivapalan;Samantha Tripp;Gemma Walmsley;Samuel Watson;J. Whitehall - 通讯作者:
J. Whitehall
葉緑体ペプチドトランスポーターを介した核遺伝子発現制御の可能性
通过叶绿体肽转运蛋白调节核基因表达的可能性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
西村 健司;関谷 堂真;石森 元幸;Samuel Watson;高見 常明;加藤 裕介;宮地 孝明;坂本 亘 - 通讯作者:
坂本 亘
An Exploratory Study on the Occurrence of Self-Admitted Technical Debt in Android Apps
Android 应用程序中自认技术债务发生的探索性研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Gregory Wilder;Riley Miyamoto;Samuel Watson;R. Kazman;Anthony Peruma - 通讯作者:
Anthony Peruma
Nuclear transcriptome rewiring involving a peptide-exporting ABC transporter on chloroplast envelopes
涉及叶绿体包膜上肽输出 ABC 转运蛋白的核转录组重新布线
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kenji Nishimura;Motoyuki Ishimori;Takamasa Sekiya;Samuel Watson;Tsuneaki Takami;Takaaki Miyaji;and Wataru Sakamoto - 通讯作者:
and Wataru Sakamoto
Samuel Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Watson', 18)}}的其他基金
Efficient geostatistical sampling to estimate the fraction of the population recovered from Covid-19
有效的地统计抽样来估计从 Covid-19 中恢复的人口比例
- 批准号:
MR/V028421/1 - 财政年份:2020
- 资助金额:
$ 61.76万 - 项目类别:
Research Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
协同中继系统跨层资源分配与优化调度的理论及方法
- 批准号:60972070
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
新型M4受体选择性拮抗剂的研究
- 批准号:30973615
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
多跳无线 MESH 网络中 QoS 保障算法的研究设计和性能分析
- 批准号:60902041
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
下一代无线通信系统自适应调制技术及跨层设计研究
- 批准号:60802033
- 批准年份:2008
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
最优证券设计及完善中国资本市场的路径选择
- 批准号:70873012
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
无重复析因设计的散度效应分析
- 批准号:10626037
- 批准年份:2006
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 61.76万 - 项目类别:
Standard Grant
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 61.76万 - 项目类别:
Design and Analysis of Holographic Optical Reconfigurable Intelligent Surface for Free-Space Optical Communications
自由空间光通信全息光学可重构智能表面设计与分析
- 批准号:
24K17272 - 财政年份:2024
- 资助金额:
$ 61.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Guided Exploration of Multiphysics Design Space for Electric Machines Using Tensorial Analysis (GEOMETRY)
职业:使用张量分析(几何)引导探索电机的多物理场设计空间
- 批准号:
2338541 - 财政年份:2024
- 资助金额:
$ 61.76万 - 项目类别:
Continuing Grant
CAREER: Modeling, Optimization, and Equilibrium Formulations for the Analysis and Design of Circular Economy Networks
职业:循环经济网络分析和设计的建模、优化和平衡公式
- 批准号:
2339068 - 财政年份:2024
- 资助金额:
$ 61.76万 - 项目类别:
Continuing Grant
Richter - Advancing Construction Design Efficiency through computational analysis: Revolutionising Working Platforms within construction industry
Richter - 通过计算分析提高建筑设计效率:彻底改变建筑行业的工作平台
- 批准号:
10089025 - 财政年份:2024
- 资助金额:
$ 61.76万 - 项目类别:
Collaborative R&D
Time series clustering to identify and translate time-varying multipollutant exposures for health studies
时间序列聚类可识别和转化随时间变化的多污染物暴露以进行健康研究
- 批准号:
10749341 - 财政年份:2024
- 资助金额:
$ 61.76万 - 项目类别:
Conference: Design and Analysis of Experiments 2024
会议:2024 年实验设计与分析
- 批准号:
2347284 - 财政年份:2024
- 资助金额:
$ 61.76万 - 项目类别:
Standard Grant
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 61.76万 - 项目类别: