Volume-collapsed manifolds in Riemannian geometry and geometric inference

黎曼几何中的体积塌陷流形和几何推理

基本信息

  • 批准号:
    MR/W01176X/1
  • 负责人:
  • 金额:
    $ 131.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

A piece of paper is a two-dimensional object and, if we roll it up into a cylinder, that cylinder is still two-dimensional, in the eyes of mathematicians. The more tightly we roll up the paper, the smaller the surface area of the resulting cylinder. If we could roll it up infinitely tightly it would (i) have zero surface area and (ii) not really be a cylinder any more, but rather a line.This project studies how this behaviour generalises to more complicated shapes which take up more dimensions. These shapes are called manifolds, and once they have at least three dimensions the analogy to their area is always called the 'volume'. Manifolds which can be 'rolled up' as tightly as we like, such as the cylinder, can be called 'volume-collapsed manifolds'. I will study two aspects of their behaviour, with the aim of addressing long-standing questions in geometry. The new knowledge produced will both provide novel theoretical insights to support the work of other mathematicians, and have practical technological applications in sectors as diverse as healthcare, finance and industryFirstly, it would seem that we can tell a lot about the manifold from the smaller limit space that it is approaching. The tightly wrapped cylinder is related to the line; we say that the cylinder is a 'fibre bundle' over the line. For every point on the line, there is a little circle (the 'fibre') on the cylinder which corresponds. All these circles 'bundled' up together add up to the cylinder. However, this example is a simple one. One simplifying aspect is the lack of curvature (a cylinder is made from a flat piece of paper). Another is that there are only two dimensions. Understanding how three-dimensional manifolds collapse while maintaining a curvature bound played a significant role in the proof of the Poincaré Conjecture, the only one of the Clay Mathematics Institute's 'Millennium Prize Problems' to have been solved so far.Project A will aim to classify the volume-collapsed manifolds corresponding to a given limit space. This will contribute greatly to the goal of understanding how curvature and shape interact, which is one of the major fields of research in geometry.The second aspect is statistical. Given a random sample of points from an unknown manifold, the more points we have the more confident we can be of identifying the manifold. However, when the manifold is volume-collapsed, it will clearly be very difficult to distinguish it from its limit space; in this example, to distinguish cylinder from line. In mathematical statistics, we seek to understand how well statistical procedures perform in the most challenging cases. When we are carrying out statistics on geometric objects, volume-collapsed manifolds clearly have a major role to play. Understanding these questions is the only way to bring the full rigour of mathematics to the exciting and successful new topological data analysis techniques being used on massive data sets.Project B will develop statistical tools which come with strong mathematical guarantees and will search for procedures which are optimal, meaning that they perform as well as is theoretically possible under the worst case scenario. In this project I will also pursue more applied goals, developing procedures to test the validity of methods being used, integrating self-validating mechanisms into data analysis tools and developing links with business to use geometrically-aware data analysis.Projects A and B will use very different methods, but as with any study of the same object from two points of view the aim is that each study will inform the other and that new connections will be revealed. Dedicating time and resources to the pursuit of both problems is the only way for us to discover those connections, and this Fellowship will enable exactly such an adventurous research programme.
一张纸是一个二维物体,如果我们将其滚成圆柱体,则在数学家的眼中,该圆柱体仍然是二维的。我们向上卷起纸的越紧,圆柱体的表面积越小。如果我们能够无限紧密地将其卷起,它将(i)表面积为零,并且(ii)不再是圆柱体,而是一条线。该项目如何研究这种行为对更复杂形状的概括,从而占据了更多的尺寸。这些形状称为歧管,一旦它们至少具有三个维度,类比与其区域的类比总是称为“音量”。可以按照我们喜欢的方式“卷起”的歧管,例如圆柱体,可以称为“体积汇总的歧管”。我将研究其行为的两个方面,目的是解决几何学中的长期问题。所产生的新知识都将提供新颖的理论见解,以支持其他数学家的工作,并在医疗保健,金融和行业之类的各种领域中具有实际的技术应用,似乎我们可以从较小的限制空间中告诉很多关于歧视的信息。紧密包装的圆柱与线路有关。我们说气缸是线上的“纤维捆”。对于线上的每个点,气缸上都有一个小圆圈(“纤维”),所有这些电路都“捆绑”在一起,加在一起。但是,这个示例很简单。一个简化的方面是缺乏曲率(圆柱体由平坦的纸制成)。另一个是只有两个维度。了解三维流形在维持曲率绑定的同时如何崩溃,在庞加莱猜想的证明中发挥了重要作用,这是迄今为止解决的克莱数学学院的“千年奖”问题。这将极大地有助于理解曲率和形状相互作用的目标,这是几何学研究的主要研究领域之一。第二个方面是统计。给定一个从未知歧管中的随机示例,我们就越拥有识别歧管的信心就越多。但是,当歧管被体积汇合时,显然很难将其与极限空间区分开。在此示例中,将圆柱与线路区分开。在数学统计中,我们试图了解统计程序在最挑战的情况下的表现。当我们执行几何对象的统计数据时,体积胶囊的歧管显然具有重要作用。理解这些问题是将数学的全部严格性带入令人兴奋而成功的新拓扑数据分析技术中使用的唯一方法。项目B将开发具有强大数学保证的统计工具,并将搜索最佳的过程,这意味着它们在最坏情况下以及在最坏情况下以及在最坏情况下的表现也是如此。在这个项目中,我还将追求更多的应用目标,开发程序来测试所使用方法的有效性,将自然验证机制整合到数据分析工具中,并与企业建立联系,以使用几何学意识到的数据分析。项目A和B将使用截然不同的方法,但是,从两个观点中对同一对象的任何研究都可以揭示出其他研究的信息,并且将会揭示其他连接。致力于追求这两个问题的时间和资源是我们发现这些联系的唯一途径,这一奖学金将使这样的冒险研究计划正是如此。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Epidemiological waves - Types, drivers and modulators in the COVID-19 pandemic.
  • DOI:
    10.1016/j.heliyon.2023.e16015
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Harvey, John;Chan, Bryan;Srivastava, Tarun;Zarebski, Alexander E.;Dlotko, Pawel;Blaszczyk, Piotr;Parkinson, Rachel H.;White, Lisa J.;Aguas, Ricardo;Mahdi, Adam
  • 通讯作者:
    Mahdi, Adam
Topological Inference of the Conley Index
康利指数的拓扑推理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Harvey其他文献

Fiction in the present tense
现在时的小说
  • DOI:
    10.1080/09502360600559795
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    John Harvey
  • 通讯作者:
    John Harvey
A Toponogov globalisation result for Lorentzian length spaces
洛伦兹长度空间的 Toponogov 全球化结果
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tobias Beran;John Harvey;L. Napper;F. Rott
  • 通讯作者:
    F. Rott
Septal Tryptophan-5-Hydroxylase: Divergent Response to Raphe Lesions and Parachlorophenylalanine
间隔色氨酸 5 羟化酶:对中缝病变和对氯苯丙氨酸的不同反应
  • DOI:
  • 发表时间:
    1974
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    John Harvey;E. Gal
  • 通讯作者:
    E. Gal
Biometrie permanence: Definition and robust calculation
生物特征持久性:定义和稳健计算
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Harvey;John W. M. Campbell;S. Elliott;Michael Brockly;A. Adler
  • 通讯作者:
    A. Adler
The COVEN Project: Exploring Applicative, Technical, and Usage Dimensions of Collaborative Virtual Environments
COVEN 项目:探索协作虚拟环境的应用、技术和使用维度
  • DOI:
    10.1162/105474699566189
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Normand;C. Babski;S. Benford;A. Bullock;S. Carion;Y. Chrysanthou;Nicolas Farcet;John Harvey;N.H.L. Kuijpers;N. Magnenat;S. Musse;T. Rodden;M. Slater;Gareth Smith
  • 通讯作者:
    Gareth Smith

John Harvey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Harvey', 18)}}的其他基金

Collaborative Research: AccelNet: ICNet Global
合作研究:AccelNet:ICNet Global
  • 批准号:
    1927543
  • 财政年份:
    2019
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Standard Grant
SoBRO TEC
索博罗技术公司
  • 批准号:
    0525162
  • 财政年份:
    2005
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Standard Grant
SGER: Social Psychological Reactions of Survivors of 1993 Flooding in Midwest
SGER:1993 年中西部洪水幸存者的社会心理反应
  • 批准号:
    9319709
  • 财政年份:
    1993
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Standard Grant
Mathematical Association of America Prognostic Testing Network Project
美国数学协会预测测试网络项目
  • 批准号:
    8850590
  • 财政年份:
    1988
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Standard Grant
Conference on Cognition, Social Behavior, and the Environment; Spring, 1979; Nashville, Tennessee
认知、社会行为和环境会议;
  • 批准号:
    7825112
  • 财政年份:
    1979
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Standard Grant
Systematic Investigation of the Cognitive Effects of Games On Mathematics Learning
游戏对数学学习认知影响的系统研究
  • 批准号:
    7718875
  • 财政年份:
    1977
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Standard Grant
Academic Year Institute in Mathematics and Science For Supervisors and Secondary School Teachers
学年数学和科学学院主管和中学教师
  • 批准号:
    7309479
  • 财政年份:
    1972
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Standard Grant

相似国自然基金

玉米collapsed2 (opaque12)突变造成籽粒淀粉含量降低和胚乳粉质的分子机制研究
  • 批准号:
    31371631
  • 批准年份:
    2013
  • 资助金额:
    84.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidation of deposition dynamics focusing on stress wave propagation of collapsed soil mass and sophistication of its evaluation methodology
阐明以塌陷土体应力波传播为重点的沉积动力学及其评估方法的复杂性
  • 批准号:
    21K14239
  • 财政年份:
    2021
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reef health tipping-points: triage for threatened/collapsed reef ecosystems
珊瑚礁健康临界点:对受威胁/崩溃的珊瑚礁生态系统进行分类
  • 批准号:
    FT200100949
  • 财政年份:
    2021
  • 资助金额:
    $ 131.35万
  • 项目类别:
    ARC Future Fellowships
Aggregation of collapsed copolymer chains consisting of flexible and semi-flexible segments: A flat histogram Monte Carlo simulation
由柔性和半柔性链段组成的塌陷共聚物链的聚集:平坦直方图蒙特卡罗模拟
  • 批准号:
    409634187
  • 财政年份:
    2019
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Research Grants
Development Collapsed Cone Convolution Dose Calculation Engine for MRI-Linac
开发用于 MRI-Linac 的塌陷锥卷积剂量计算引擎
  • 批准号:
    18K15617
  • 财政年份:
    2018
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Obesity induced by collapsed feeding rhythm
喂养节律崩溃导致肥胖
  • 批准号:
    16K12746
  • 财政年份:
    2016
  • 资助金额:
    $ 131.35万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了