Nanofluidic Energy Absorption of Metal-Organic Frameworks
金属有机框架的纳流体能量吸收
基本信息
- 批准号:MR/W012138/1
- 负责人:
- 金额:$ 138.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Smart materials possessing efficient and controllable energy absorption characteristics are a critical step forward in the engineering of next-generation protection technologies against impact, vibration, and blast. For instance, such materials technology can provide soldiers and police with body armours or bomb suits that offer better protection than ever before. Similarly, it can prevent human body injuries in sports and vehicle crashes, or enhance comfort and reduce maintenance costs used as vibration-proof damping materials. However, in order to design protection systems, engineers currently only have a very limited toolbox based on energy absorption mechanisms developed decades ago, such as plastic deformation of materials, buckling of structures, polymer damping, etc. These mechanisms are useful but have important intrinsic limitations in energy absorption density (i.e. capacity per unit mass), response rate, and most of them cannot be reused or controlled to cope with varying loading conditions. These hinder the delivery of the full potential of energy absorption for the benefit of society. The recent rise of nanoscience has allowed novel approaches to be developed and exciting new performances to be imagined for the first time. The objective of the fellowship is to lay the foundations of a new era in energy absorption and protection systems by leveraging a multidisciplinary approach engaging the nanoscale material chemistry and physics. The underpinning novelty is to exploit a fundamentally new energy absorption phenomenon through the process of mechanically squeezing non-wetting liquid into extremely small spaces in a controllable way. These spaces will be made so small that the liquid, for example, water, must split into water molecules to be able to enter and flow inside, and therefore a substantial amount of mechanical energy can be absorbed during this process. A sponge-like porous material called Metal-Organic Frameworks (MOFs) will be used which provides these kinds of small pores. Their pore size is at the nanoscale, i.e. one-billionth of a metre, comparable to the size of water or other liquid molecules. The idea is ground-breaking as it has the potential to lift the current major limitations of energy absorption systems, e.g. to achieve unprecedented efficiency, reusability, and controllability. One can design the nanoscale liquid intrusion and extrusion behaviours to achieve desired performances such as reusability, or even control their performance in real-time by applying external stimuli: rather than simply being a passive shield, it can provide protection that is customized for different situations and individual's body conditions. The applicant has developed novel experimental techniques to apply and measure sudden shocks onto the system that replicate those experienced in practical impact, which also allows in-situ material characterisation and the application of physical stimuli. With experiments on material systems of different structures and properties, the fellowship aims to fully understand how liquid molecules transport under intensive pressure waves inside MOFs as a flexible and controllable nanoconfinement. It has the potential to revolutionize energy absorption materials and enhance our knowledge of MOF mechanics and nanofluidics. This will in turn benefit many sectors of engineering and society in the long term.
具有高效和可控能量吸收特性的智能材料是下一代冲击、振动和爆炸防护技术工程的关键一步。例如,这种材料技术可以为士兵和警察提供比以往任何时候都更好的保护。同样,它可以防止运动和车辆碰撞中的人体伤害,或作为防振阻尼材料使用,提高舒适性,降低维护成本。然而,为了设计保护系统,工程师们目前只有非常有限的工具箱,这些工具箱基于几十年前开发的能量吸收机制,例如材料的塑性变形、结构的屈曲、聚合物阻尼等。这些机制是有用的,但在能量吸收密度方面具有重要的内在局限性(即每单位质量的容量)、响应速率,并且它们中的大多数不能被重复使用或控制以科普变化的负载条件。这些阻碍了为社会利益提供能量吸收的全部潜力。最近兴起的纳米科学允许开发新的方法,并首次设想令人兴奋的新性能。该奖学金的目标是通过利用多学科方法参与纳米材料化学和物理学,为能量吸收和保护系统的新时代奠定基础。其新奇之处在于,通过以可控方式将非润湿液体机械挤压到极小空间中的过程,利用了一种全新的能量吸收现象。这些空间将被制造得如此之小,使得液体(例如,水)必须分裂成水分子才能够进入并在内部流动,并且因此在该过程期间可以吸收大量的机械能。将使用一种称为金属有机框架(MOF)的海绵状多孔材料,它提供了这些类型的小孔。它们的孔径是纳米级的,即十亿分之一米,相当于水或其他液体分子的大小。这一想法是突破性的,因为它有可能解除目前能量吸收系统的主要限制,例如实现前所未有的效率,可重复使用性和可控性。人们可以设计纳米级的液体侵入和挤出行为,以实现所需的性能,如可重复使用性,甚至通过施加外部刺激来实时控制其性能:而不是简单地作为被动屏蔽,它可以提供针对不同情况和个人身体状况定制的保护。申请人开发了新的实验技术,以将突然冲击施加和测量到系统上,该系统复制了在实际冲击中经历的冲击,这也允许现场材料表征和物理刺激的应用。通过对不同结构和性质的材料系统进行实验,该研究金旨在充分了解液体分子如何在MOFs内部的强烈压力波下传输,作为一种灵活和可控的纳米限制。它有可能彻底改变能量吸收材料,并提高我们对MOF力学和纳米流体的知识。从长远来看,这将反过来使工程和社会的许多部门受益。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanical Behaviour of Metal - Organic Framework Materials
金属-有机骨架材料的机械行为
- DOI:10.1039/9781839166594-00267
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sun Y
- 通讯作者:Sun Y
Liquids with High Compressibility.
高压缩性液体。
- DOI:10.1002/adma.202306521
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lai B
- 通讯作者:Lai B
Nanofluidic Attenuation of Metal-Organic Frameworks
金属有机框架的纳流体衰减
- DOI:10.3397/in_2022_0938
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Xiao H
- 通讯作者:Xiao H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yueting Sun其他文献
Framework flexibility of ZIF-8 under liquid intrusion: discovering time-dependent mechanical response and structural relaxation.
ZIF-8 在液体侵入下的框架灵活性:发现时间依赖性机械响应和结构松弛。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yueting Sun;Yibing Li;Jin‐Chong Tan - 通讯作者:
Jin‐Chong Tan
A defiltration control method of pressurized liquid in zeolite ZSM-5 by silanol introduction
引入硅烷醇的ZSM-5沸石加压液体脱滤控制方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yueting Sun;Weiyi Lu;Yibing Li - 通讯作者:
Yibing Li
Energy absorption mechanism of polyvinyl butyral laminated windshield subjected to head impact: experiment and numerical simulation
聚乙烯醇缩丁醛层压挡风玻璃头部碰撞能量吸收机理:实验与数值模拟
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:5.1
- 作者:
Bohan Liu;Tingni Xu;Xiaoqing Xu;Yan Wang;Yueting Sun;Yibing Li - 通讯作者:
Yibing Li
Rate effect of liquid infiltration into mesoporous materials
液体渗透介孔材料的速率效应
- DOI:
10.1039/c6ra24862d - 发表时间:
2017 - 期刊:
- 影响因子:3.9
- 作者:
Yueting Sun;Chengliang Xu;Weiyi Lu;Yibing Li - 通讯作者:
Yibing Li
Role of reduced nitrogen for induction of embryogenic callus induction and regeneration of plantlets in <em>Abelmoschus esculentus</em> L.
- DOI:
10.1016/j.sajb.2020.01.016 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Hafiz Muhammad Rizwan;Muhammad Irshad;Bizhu He;Shuang Liu;Xiaocao Lu;Yueting Sun;Dongliang Qiu - 通讯作者:
Dongliang Qiu
Yueting Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
度量测度空间上基于狄氏型和p-energy型的热核理论研究
- 批准号:QN25A010015
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Multi-isotopologue absorption spectroscopy for hydrogen-carrier and nitrogen-based low-carbon energy
职业:氢载体和氮基低碳能源的多同位素吸收光谱
- 批准号:
2339502 - 财政年份:2024
- 资助金额:
$ 138.25万 - 项目类别:
Continuing Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
- 批准号:
2347622 - 财政年份:2024
- 资助金额:
$ 138.25万 - 项目类别:
Standard Grant
Disruption of faeces and urinary energy excretion (digestion and absorption rate) homeostasis due to overfeeding and its physiological significance
过度喂养导致粪便和尿液能量排泄(消化和吸收率)稳态的破坏及其生理意义
- 批准号:
23H03343 - 财政年份:2023
- 资助金额:
$ 138.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing the optical response of absorbing structures with energy absorption interferometry
使用能量吸收干涉测量法表征吸收结构的光学响应
- 批准号:
570186-2022 - 财政年份:2022
- 资助金额:
$ 138.25万 - 项目类别:
Postgraduate Scholarships - Doctoral
Energy absorption and impact mechanics of origami structures and materials
折纸结构和材料的能量吸收和冲击力学
- 批准号:
DE220101094 - 财政年份:2022
- 资助金额:
$ 138.25万 - 项目类别:
Discovery Early Career Researcher Award
Understanding Hierarchy and Multi-stability in Mechanical Metamaterials for Advanced Energy Absorption
了解先进能量吸收机械超材料的层次结构和多稳定性
- 批准号:
2151154 - 财政年份:2022
- 资助金额:
$ 138.25万 - 项目类别:
Standard Grant
Flow Physics and Wave Energy Absorption of an Oscillating Horizontal Cylinder Near Free Surface
近自由表面振荡水平圆柱体的流动物理和波能吸收
- 批准号:
2135354 - 财政年份:2022
- 资助金额:
$ 138.25万 - 项目类别:
Interagency Agreement
CELLCOMP: Data-driven Mechanistic Modelling of Scalable Cellular Composites for Crash Energy Absorption
CELLCOMP:用于碰撞能量吸收的可扩展蜂窝复合材料的数据驱动机制建模
- 批准号:
EP/V049259/1 - 财政年份:2022
- 资助金额:
$ 138.25万 - 项目类别:
Research Grant
MRI: Acquisition of a Benchtop X-ray Absorption and Emission Spectrometer for Sustainable Energy Research
MRI:购买台式 X 射线吸收和发射光谱仪用于可持续能源研究
- 批准号:
2117955 - 财政年份:2021
- 资助金额:
$ 138.25万 - 项目类别:
Standard Grant
Creation of Functional Lattice Structure for Energy Absorption of Underwater Pressure Waves
创建用于水下压力波能量吸收的功能格子结构
- 批准号:
21K14048 - 财政年份:2021
- 资助金额:
$ 138.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




