Regulation of DNA repair by histone ADP-ribosylation

组蛋白 ADP 核糖基化调节 DNA 修复

基本信息

  • 批准号:
    MR/W017350/1
  • 负责人:
  • 金额:
    $ 86.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

DNA is continually being exposed to a variety of agents that induce DNA damage. As such, a set of pathways known as the DNA damage response (DDR) detect DNA damage when it occurs and activate mechanisms for its repair. These pathways are critical for our health and their dysfunction leads to a variety of pathologies including increased cancer risk, neurodegeneration, congenital abnormalities and premature ageing. Therefore, understanding how cells repair DNA damage will provide information about the underlying causes of these conditions and, importantly, how they can be treated.This strategy is exemplified by inhibition Poly(ADP-ribose)-polymerases (PARPs), a class of enzymes that promote DNA repair by attaching ADP-ribose units onto proteins through a process known as ADP-ribosylation. Inhibitors of PARPs are being used to treat breast and ovarian cancers and have the potential to treat other pathologies associated with DDR defects. However, despite their potential as therapeutic targets, our knowledge of how PARPs regulate DNA repair is limited. For example, the proteins ADP-ribosylated in response to DNA damage and how this regulates repair are ill-defined. This situation is epitomized by histones, the proteins that package DNA into the nucleus of the cell. Histones are major targets for PARPs, particularly at serine amino acids that also have the potential to be modified by phosphorylation. Given phosphorylation regulates a variety of processes, including cell growth and division, this raises the possibility that interplay between ADP-ribosylation and phosphorylation may coordinate DNA repair with a variety of pathways. However, the functional significance of these relationships remains to be tested due to difficulties in manipulating histone genes in human cells. There is therefore a need for an experimental system where histone genes can be easily manipulated to test how histone ADP-ribosylation regulates DNA repair.Our current MRC-funded work provided key advances to these questions by developing a robust experimental pipeline in the amoeba Dictyostelium that allowed us to manipulate histone genes to assess how histone ADP-ribosylation regulates DNA repair. Our previous work pioneered the use of this system to study human DNA repair mechanisms lost in other genetic model organisms, including ADP-ribosylation. By exploiting the unique ability to manipulate histone ADP-ribosylation sites in this organism, we identified that interplay between histone ADP-ribosylation and phosphorylation is critical to maintain genome integrity by coordinating DNA repair with cell division. This provides a paradigm shift for how ADP-ribosylation integrates with other post-translational modifications to regulate the DDR and the ability to identify novel regulatory mechanisms that can be extended to human cells. The proposed work will build on these key technical and conceptual advances in Dictyostelium to identify how histone ADP-ribosylation couples DNA repair with cell cycle progression and extend these findings to human cells. In addition to providing an increased understanding of how cells promote DNA repair to prevent mutagenesis, these studies will provide information to facilitate the design of therapeutic agents that target DNA repair pathways to treat pathologies associated with a defective DDR.
DNA不断暴露于各种诱导DNA损伤的试剂。因此,一组称为DNA损伤反应(DDR)的途径在DNA损伤发生时检测DNA损伤并激活其修复机制。这些途径对我们的健康至关重要,它们的功能障碍会导致多种病理,包括癌症风险增加、神经退行性疾病、先天性异常和过早衰老。因此,了解细胞如何修复DNA损伤将提供有关这些疾病的根本原因的信息,更重要的是,如何治疗这些疾病。这种策略的例子是抑制聚(ADP-核糖)聚合酶(PARP),这是一类促进DNA修复的酶,通过ADP核糖基化过程将ADP-核糖单元连接到蛋白质上。PARP的抑制剂被用于治疗乳腺癌和卵巢癌,并有可能治疗与DDR缺陷相关的其他病理。然而,尽管它们作为治疗靶点的潜力,我们对PARP如何调节DNA修复的知识是有限的。例如,蛋白质ADP核糖基化对DNA损伤的反应以及如何调节修复是不明确的。这种情况集中体现在组蛋白上,组蛋白是将DNA包装到细胞核中的蛋白质。组蛋白是PARP的主要靶点,特别是在丝氨酸氨基酸上,这些氨基酸也有可能被磷酸化修饰。鉴于磷酸化调节多种过程,包括细胞生长和分裂,这增加了ADP-核糖基化和磷酸化之间的相互作用可能协调DNA修复与多种途径的可能性。然而,这些关系的功能意义仍有待测试,由于在人类细胞中操纵组蛋白基因的困难。因此,需要一个实验系统,可以很容易地操纵组蛋白基因来测试组蛋白ADP-核糖基化如何调节DNA修复。我们目前的MRC资助的工作提供了这些问题的关键进展,通过开发一个强大的实验管道,在阿米巴Dictyosteelium,使我们能够操纵组蛋白基因,以评估组蛋白ADP-核糖基化如何调节DNA修复。我们以前的工作开创了使用该系统来研究在其他遗传模式生物中丢失的人类DNA修复机制,包括ADP-核糖基化。通过利用这种生物体中操纵组蛋白ADP-核糖基化位点的独特能力,我们确定了组蛋白ADP-核糖基化和磷酸化之间的相互作用对于通过协调DNA修复与细胞分裂来维持基因组完整性至关重要。这为ADP-核糖基化如何与其他翻译后修饰整合以调节DDR以及鉴定可扩展至人类细胞的新型调节机制的能力提供了范式转变。拟议的工作将建立在这些关键的技术和概念上的进展,在Dictyosteoblasts,以确定如何组蛋白ADP-核糖基化夫妇DNA修复与细胞周期进程,并将这些发现扩展到人类细胞。除了提供对细胞如何促进DNA修复以防止诱变的更多理解之外,这些研究将提供信息以促进靶向DNA修复途径的治疗剂的设计,以治疗与缺陷DDR相关的病理。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
C16orf72/HAPSTR1/TAPR1 functions with BRCA1/Senataxin to modulate replication-associated R-loops and confer resistance to PARP disruption.
  • DOI:
    10.1038/s41467-023-40779-9
  • 发表时间:
    2023-08-17
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Sharma, Abhishek Bharadwaj;Ramlee, Muhammad Khairul;Kosmin, Joel;Higgs, Martin R.;Wolstenholme, Amy;Ronson, George E.;Jones, Dylan;Ebner, Daniel;Shamkhi, Noor;Sims, David;Wijnhoven, Paul W. G.;Forment, Josep;Gibbs-Seymour, Ian;Lakin, Nicholas D.
  • 通讯作者:
    Lakin, Nicholas D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Lakin其他文献

Nicholas Lakin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Lakin', 18)}}的其他基金

Defining the role of PARPs in the DNA repair and genome stability
定义 PARP 在 DNA 修复和基因组稳定性中的作用
  • 批准号:
    MR/V00896X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Research Grant
Defining the role of ADP-ribosyltransferases in DNA repair and genome stability
定义 ADP-核糖基转移酶在 DNA 修复和基因组稳定性中的作用
  • 批准号:
    MR/P018963/1
  • 财政年份:
    2017
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Research Grant
Defining the function of histone ADP-ribosylation in DNA repair and genome integrity
定义组蛋白 ADP-核糖基化在 DNA 修复和基因组完整性中的功能
  • 批准号:
    MR/P028284/1
  • 财政年份:
    2017
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Research Grant
Modelling ADP-ribosyltransferases as therapeutic targets in cancer therapy
将 ADP-核糖基转移酶建模为癌症治疗中的治疗靶点
  • 批准号:
    MR/L000164/1
  • 财政年份:
    2014
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Research Grant
Regulation of DNA repair pathway choice during development
发育过程中 DNA 修复途径选择的调控
  • 批准号:
    BB/H009957/1
  • 财政年份:
    2010
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Research Grant

相似国自然基金

替尼泊苷抑制APEX1驱动DNA损伤在治疗肺癌中的作用及机制研究
  • 批准号:
    JCZRYB202500477
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HMGCL通过H3K27乙酰化增强RAD52依赖的DNA损伤修复促进宫颈癌放疗抵抗的机制研究
  • 批准号:
    JCZRLH202500546
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于仿生非平衡态的DNA纳米机器构建及其对多种霉菌毒素高灵敏同步
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 DNA 编码分子库的新型蛋白抑制剂分子胶水活性评价与机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
复制蛋白A小分子抑制剂-HAMNO调控DNA损伤修复的结构及功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于合金@硼烯的比率型折纸电化学芯片构建及其在多种循环肿瘤DNA的超灵敏检测
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
NEDD4泛素化调控CREB/miR-132轴诱发精子DNA碎片化在肥胖不育中的作用及机制
  • 批准号:
    QN25H200016
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高强度DNA杂化纳米机器人在内体膜调控和核酸药物递送中的基础研究
  • 批准号:
    HDMZ25H300006
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PLOD2的DNA低甲基化模式驱动内质网与线粒体代谢串扰诱导免疫微环境重塑和化疗耐药
  • 批准号:
    KLY25H160008
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于内在抗炎和抗氧化功能的可注射 DNA 水凝胶高效负载牙髓干细胞促进脊髓损伤修复的作用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Multifaceted regulation of the DNA repair machinery and suppression of aberrant transcription by telomere proteins
DNA 修复机制的多方面调控和端粒蛋白异常转录的抑制
  • 批准号:
    2246561
  • 财政年份:
    2023
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
DNA-PKcs Regulation of LAT-Mediated Early TCR Signaling in CD4+ and CD8+ T Cells
DNA-PKcs 对 CD4 和 CD8 T 细胞中 LAT 介导的早期 TCR 信号转导的调节
  • 批准号:
    10741023
  • 财政年份:
    2023
  • 资助金额:
    $ 86.32万
  • 项目类别:
Noncanonical E2F Regulation in the Neuronal DNA Damage Response
神经元 DNA 损伤反应中的非典型 E2F 调节
  • 批准号:
    10752078
  • 财政年份:
    2023
  • 资助金额:
    $ 86.32万
  • 项目类别:
Regulation of HTT-mediated DNA damage repair and chromatin remodeling Complexes
HTT 介导的 DNA 损伤修复和染色质重塑复合物的调节
  • 批准号:
    10800972
  • 财政年份:
    2023
  • 资助金额:
    $ 86.32万
  • 项目类别:
Regulation of DNA double-strand break repair pathway choice
DNA双链断裂修复途径选择的调控
  • 批准号:
    10656805
  • 财政年份:
    2023
  • 资助金额:
    $ 86.32万
  • 项目类别:
Regulation of DNA damage-repair response by an anti-aging protein
抗衰老蛋白对 DNA 损伤修复反应的调节
  • 批准号:
    23KJ1646
  • 财政年份:
    2023
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Regulation of the tumor microenvironment by DNA damage repair proteins
DNA损伤修复蛋白调节肿瘤微环境
  • 批准号:
    10737565
  • 财政年份:
    2023
  • 资助金额:
    $ 86.32万
  • 项目类别:
Regulation of the tumor microenvironment by DNA damage repair proteins
DNA损伤修复蛋白调节肿瘤微环境
  • 批准号:
    10998271
  • 财政年份:
    2023
  • 资助金额:
    $ 86.32万
  • 项目类别:
Regulation of DNA repair by FET family protein phase separation
FET 家族蛋白相分离调节 DNA 修复
  • 批准号:
    RGPIN-2019-07088
  • 财政年份:
    2022
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Discovery Grants Program - Individual
Regulation of DNA repair pathways by monoubiquitin signals
单泛素信号对 DNA 修复途径的调节
  • 批准号:
    MR/W025256/1
  • 财政年份:
    2022
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了