MICA: Mitochondrial dysfunction in macrophages and impaired bacterial clearance in chronic obstructive pulmonary disease (COPD)
MICA:慢性阻塞性肺疾病 (COPD) 中巨噬细胞线粒体功能障碍和细菌清除受损
基本信息
- 批准号:MR/W028506/1
- 负责人:
- 金额:$ 202.11万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease caused by inflammation and narrowing of the small airways, leading to breathlessness. COPD is triggered by cigarette smoke, but inflammation persists after stopping smoking and causes disease progression. Identifying what drives inflammation is vital since no treatment can stop progression. Frequent bacterial chest infections are associated with worsening COPD symptoms. We believe that ineffective clearance of bacteria from the airways causes COPD progression. We and others have found that in COPD, immune cells in the air sacs in the lung display faulty responses to bacteria that commonly cause chest infections resulting in bacteria persisting in the airway. These cells, termed alveolar macrophages (AM), are less able to eat and kill bacteria in people with COPD. We will examine why this happens.The process by which cells, such as AM, produce energy (metabolism) changes dynamically based on the cells function (e.g. killing bacteria). Our preliminary results suggest that COPD AM are less able to adjust their metabolism as needed, and this prevents bacterial clearance. Key parts of the cell involved in metabolism are mitochondria. Normally, after macrophages have eaten bacteria, the function of their mitochondria changes away from metabolism and towards producing substances to kill bacteria (mitochondrial reactive oxygen species; "mROS"). This requires the mitochondria to break up into smaller units ("mitochondrial fission"). Our work suggests that COPD AM normally produce too much mROS so cannot increase production to kill bacteria. We believe that in COPD, AM mitochondria are less able to adapt their function when trying to kill bacteria, leading to susceptibility to infection. However, the precise details of how these processes normally function, or go wrong in COPD, are not fully understood. A better understanding is needed to identify new treatments to enhance these processes in COPD. We will determine the key changes in metabolism, production of mROS and mitochondrial fission in macrophages required to kill bacteria effectively in healthy people and determine how COPD alters this response.To do this, we will study AM from the blood or lungs of healthy non-smokers, healthy current smokers, and people with COPD. We will isolate AM from the lungs by bronchoscopy, where a fibre-optic tube is passed into the airways and a segment of the lung is flushed with fluid to obtain the cells. We will also use mouse models of infection and airway disease. First, we will characterise in detail the metabolic response of AM to infection by isolating AM and labelling them with chemicals to track metabolism ("mass spectrometry"). We will measure patterns of genes and proteins involved in responding to bacteria, to identify metabolic pathways engaged during infection. We will confirm these metabolic responses in healthy AM and then determine how they are altered in COPD. Next, we will measure mROS production and investigate how it is produced following infection and in COPD AM. We will also examine the timing and mechanism of mitochondrial fission in these conditions. Our current findings suggest several potential mechanisms for mROS production and fission, and our analyses of metabolism and gene expression here will help determine which theories to test. Key findings from human cells will be validated in mouse models. We will also validate findings using macrophages derived from cells from people with genetic defects impacting mitochondrial function. We will use chemical and gene editing techniques in cells to modify pathways we have identified as altered in COPD that impact bacterial responses. Finally, to develop potential treatments we will screen libraries of drugs to identify ways of improving key responses. These will be tested in mouse models and patient samples to help prioritise approaches for future trials in COPD.
慢性阻塞性肺疾病(COPD)是一种进行性肺部疾病,由炎症和小气道狭窄引起,导致呼吸困难。COPD是由吸烟引发的,但戒烟后炎症持续存在,并导致疾病进展。确定是什么驱动了炎症是至关重要的,因为没有治疗可以阻止进展。频繁的细菌性胸部感染与COPD症状恶化有关。我们认为,气道细菌清除无效导致COPD进展。我们和其他人已经发现,在COPD中,肺部气囊中的免疫细胞对通常导致胸部感染的细菌表现出错误的反应,导致细菌在气道中持续存在。这些细胞被称为肺泡巨噬细胞(AM),在COPD患者中不太能够吞噬和杀死细菌。我们将研究为什么会发生这种情况。细胞(如AM)产生能量的过程(代谢)根据细胞功能(如杀死细菌)动态变化。我们的初步结果表明,COPD AM根据需要调整代谢的能力较低,这会阻止细菌清除。参与新陈代谢的细胞的关键部分是线粒体。通常,在巨噬细胞吃掉细菌后,它们的线粒体的功能从代谢转变为产生杀死细菌的物质(线粒体活性氧;“mROS”)。这需要线粒体分裂成更小的单位(“线粒体裂变”)。我们的研究表明,COPD AM通常会产生过多的mROS,因此无法增加产量以杀死细菌。我们认为,在COPD中,AM线粒体在试图杀死细菌时不太能够适应它们的功能,导致对感染的易感性。然而,这些过程如何正常运作或在COPD中出错的确切细节尚未完全了解。需要更好地了解以确定新的治疗方法来增强COPD的这些过程。我们将确定代谢的关键变化,mROS的产生和巨噬细胞中的线粒体分裂需要在健康人中有效地杀死细菌,并确定COPD如何改变这种反应。为了做到这一点,我们将研究来自健康的非吸烟者,健康的当前吸烟者和COPD患者的血液或肺部的AM。我们将通过支气管镜从肺中分离AM,其中将光纤管通入气道,并用液体冲洗肺的一部分以获得细胞。我们还将使用感染和气道疾病的小鼠模型。首先,我们将通过分离AM并用化学物质标记它们以跟踪代谢(“质谱法”)来详细研究AM对感染的代谢反应。我们将测量与细菌反应有关的基因和蛋白质的模式,以确定感染期间参与的代谢途径。我们将在健康AM中确认这些代谢反应,然后确定它们在COPD中是如何改变的。接下来,我们将测量mROS的产生,并研究它是如何在感染后和COPD AM中产生的。我们还将研究在这些条件下线粒体分裂的时间和机制。我们目前的研究结果提出了mROS产生和裂变的几种潜在机制,我们对代谢和基因表达的分析将有助于确定要测试哪些理论。来自人类细胞的关键发现将在小鼠模型中得到验证。我们还将使用来自具有影响线粒体功能的遗传缺陷的人的细胞的巨噬细胞来验证研究结果。我们将在细胞中使用化学和基因编辑技术来修改我们在COPD中发现的影响细菌反应的途径。最后,为了开发潜在的治疗方法,我们将筛选药物库,以确定改善关键反应的方法。这些将在小鼠模型和患者样本中进行测试,以帮助确定未来COPD试验的优先方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Dockrell其他文献
Pneumolysin mediates lysosomal changes following internalisation by macrophages
- DOI:
10.1016/j.jinf.2008.01.016 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:
- 作者:
Martin Bewley;Marc Daigneault;Tim Mitchell;Rob Read;Moira Whyte;David Dockrell - 通讯作者:
David Dockrell
Correction to: Managing pneumonia through facility-based integrated management of childhood management (IMCI) services: an analysis of the service availability and readiness among public health facilities in Bangladesh
- DOI:
10.1186/s12913-021-06898-z - 发表时间:
2021-08-26 - 期刊:
- 影响因子:3.000
- 作者:
Ahmed Ehsanur Rahman;Shema Mhajabin;David Dockrell;Harish Nair;Shams El Arifeen;Harry Campbell - 通讯作者:
Harry Campbell
Is FRAX® a valid screening tool for fragility fracture risk assessment in HIV-positive individuals?: Category: Scientific free paper
- DOI:
10.1016/j.jinf.2011.04.078 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:
- 作者:
Ben Stone;Eugene McCloskey;Christine Bowman;David Dockrell - 通讯作者:
David Dockrell
The association between Vitamin D deficiency and CD4 T-Lymphocyte depletion in sero-positive individuals: Category: Scientific free paper
- DOI:
10.1016/j.jinf.2011.04.090 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:
- 作者:
Alicia Vedio;Benjamin Stone;Anne Tunbridge;David Dockrell - 通讯作者:
David Dockrell
David Dockrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Dockrell', 18)}}的其他基金
Optimising Innate Host Defence to Combat Antimicrobial Resistance
优化宿主先天防御以对抗抗生素耐药性
- 批准号:
MR/N02995X/1 - 财政年份:2016
- 资助金额:
$ 202.11万 - 项目类别:
Research Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
The Contribution of Mitochondrial Dysfunction to Alzheimer's disease
线粒体功能障碍对阿尔茨海默病的影响
- 批准号:
2886872 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别:
Studentship
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别:
A Refined Murine Model of Post-sepsis Cognitive Impairment for Investigating Mitochondrial Abnormalities and Human ApoE4 Gene Polymorphisms
用于研究线粒体异常和人类 ApoE4 基因多态性的精制脓毒症后认知障碍小鼠模型
- 批准号:
10646579 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别:
Circadian and mitochondrial dysfunction in alcohol-related liver disease
酒精相关性肝病中的昼夜节律和线粒体功能障碍
- 批准号:
10667861 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别:
Heat therapy for the treatment of SCI-induced changes in nociceptor and mitochondrial function
热疗法治疗 SCI 引起的伤害感受器和线粒体功能变化
- 批准号:
10641385 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别:
Regulation of neuronal function by mitochondrial uncoupling
通过线粒体解偶联调节神经元功能
- 批准号:
10664198 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别:
Control of insulin secretion by mitochondrial fusion
通过线粒体融合控制胰岛素分泌
- 批准号:
10753730 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别:
Investigating the impact and dynamic of mitochondrial common deletion in somatic cells
研究体细胞线粒体常见缺失的影响和动态
- 批准号:
10826448 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别:
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
- 批准号:
10735778 - 财政年份:2023
- 资助金额:
$ 202.11万 - 项目类别: