FMRI OF MOTOR CORTEX COMPARISON OF ECHO PLANAR & SPIRAL PULSE SEQUENCES

运动皮层 FMRI 与 ECHO 平面的比较

基本信息

  • 批准号:
    6123009
  • 负责人:
  • 金额:
    $ 4.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-01-01 至 2000-07-31
  • 项目状态:
    已结题

项目摘要

Introduction: Gadolinium enhanced MRI has been widely recognized as an extremely sensitive test for breast cancer, capable of detecting a significant number of breast cancers which are obscured on mammograms, or not-palpable. Breast MRI has been plagued by non-specificity. Not all lesions which enhance are cancer. We have pursued two simultaneous methods to improve breast MR specificity: characterization of suspicious lesions based on their morphology on high resolution 3DSSMT images, and assessment of lesion neo-vascularity based on a 2-compartment pharmacokinetic model of rapid dynamic spiral images Methods: High resolution, 3DSSMT imaging was developed at Stanford several years with over 100 exams have been performed. We retrospectively performed a systematic review of all 3DSSMT exams, and evaluated all pathologically proven lesions on the basis of their morphology, including lesion borders, internal architecture, and patterns of enhancement. ROC analysis was performed to determine which characteristics were most predictive of malignancy. Ultrafast whole breast dynamic imaging with Spiral MR was developed and pioneered at Stanford about 2 years ago. A 2-compartment pharmacokinetic model was implemented to analyze these lesions, and yielded a number of parameters, including the vascular permeability constant K21, the extraction constant Kel, the normalized amplitude, and secondary parameters such as the wash-in rate, and wash-out rate. ROC analysis was used to assess the diagnostic performance of the parameters, and compare their ability to separate benign and malignant disease. Results: High resolution 3DSSMT, and rapid dynamic Spiral imaging were found to improve specificity of contrast enhanced breast MRI. Conclusions: New advances in breast MR, promise to increase the specificity of the technique. Analysis of lesion morphology reveals that some features, such as smooth borders, internal septations, and completely uniform enhancement suggest benign disease, whereas spiculated, ring enhancement, and focal skin thickening are usually associated with malignancy. Pharmaco-kinetic modeling suggests that the K21 parameter best distinguishes cancer from benign disease. Three-dimensional rendering of breast MR images aided surgical management in a majority of a limited series of cases.
前言:钆增强MRI已被广泛认可 作为一种对乳腺癌极其敏感的检测方法, 有相当数量的乳腺癌, 乳房X光片或触诊不到 乳房核磁共振成像一直受到 非特异性。 并非所有增强的病变都是癌症。 我们有 同时采用两种方法来提高乳腺MR特异性: 根据可疑病变的形态特征, 高分辨率3DSSMT图像和病变评估 基于二室药代动力学模型的新生血管 快速动态螺旋成像方法:高分辨率,3DSSMT成像 是在斯坦福大学开发的,已经有100多个考试, 执行。 我们回顾性地对所有 3DSSMT检查,并评估了所有病理证实的病变上 它们的形态学基础,包括病变边界、内部 架构和增强模式。 进行ROC分析 以确定哪些特征最能预测恶性肿瘤。 建立了全乳腺螺旋MR超快速动态成像系统 并于两年前在斯坦福大学开创。 2房室 采用药代动力学模型分析这些病变, 得出了一些参数,包括血管通透性 常数K21,提取常数Kel,归一化幅度, 以及次要参数如洗入速率和洗出速率。 使用ROC分析来评估其诊断性能 参数,并比较它们区分良性和恶性的能力 疾病 结果:高分辨率3DSSMT和快速动态螺旋 发现成像可提高对比增强乳腺的特异性 核磁共振 结论:乳腺MR的新进展,有望增加 技术的特异性。 病变形态分析显示 一些特征,如平滑的边界,内部分隔, 完全均匀强化提示良性病变,而 毛刺,环形增强,局灶性皮肤增厚通常是 与恶性肿瘤有关。 药物动力学模型表明, K21参数最能区分癌症和良性疾病。 乳腺MR图像的三维重建在外科手术中的应用 在有限的一系列案件中的大多数案件中进行管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANNE MARIE SAWYER-GLOVER其他文献

ANNE MARIE SAWYER-GLOVER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了