Using Cosmic Beasts To Uncover The Nature Of Dark Matter

利用宇宙野兽揭示暗物质的本质

基本信息

  • 批准号:
    MR/X006069/1
  • 负责人:
  • 金额:
    $ 73.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Astronomers have only observed 5% of the content of the Universe so far: the luminous (or baryonic) matter. The remaining 95% is invisible, consisting of so-called Dark Matter and Dark Energy. The nature of dark matter and dark energy is one of the most pressing fundamental questions in modern physics. This Dark Sector of our Universe has remained impossible to detect directly, because neither component interacts with standard matter particles. Moreover many theories predict dark matter will remain fundamentally undetectable in terrestrial experiments, and can only be probed by astrophysical laboratories. If these theories are correct, dark matter can only be studied where it gathers in sufficient quantities for its gravity to affect things around it we can see. I propose to track the behaviour of dark matter in galaxy clusters (the most massive observable structures in the universe, also called 'cosmic beasts'), to distinguish between the 3 leading models: cold, warm and self-interacting dark matter.My FLF project exploits a dramatic increase over the past decade in observations of galaxy clusters by the world's biggest telescopes, reflecting the field's recognition as a top priority goal. I got awarded observing time on the Hubble Space Telescope in the largest category of programme (>100 orbits) to obtain the deepest ever imaging of clusters' surroundings, plus follow-up spectroscopy from the largest telescope on Earth (VLT). I designed these observations to map clusters' dark matter, via the effect of 'gravitational lensing', which distorts and magnifies objects behind the cluster. I use these data (i) by themselves, (ii) to calibrate the largest (but shallow) Hubble imaging (iii) to set the agenda for, and optimise facilities like Euclid, Athena and the James Webb Space Telescope through the 2020s.Cosmological simulations indicate that galaxy clusters are the best laboratories to distinguish between models of dark matter, because they are still growing. Clusters grow by merging with each other; every merger acts like a gigantic particle collider. The properties of dark matter are revealed by its trajectory through a collision, which should be between that of stars and of (hydrogen) gas. The properties of stars and hydrogen are well understood, so they bookend measurements of dark matter.Traditional research programmes usually separate measurements of dark matter, stars and gas, because they require observations from different (infrared, ultraviolet, X-ray) telescopes. I have developed a multiwavelength analysis, to enable previously impossible measurements such as the time-scale on which dark matter and gas are funneled into clusters, how quickly clusters reach equilibrium, and constraints on possible dark matter particle interactions.I have also led the establishment of a new research area, which I have expanded since the start of my FLF. When transient events (such as supernova explosions) happen behind a galaxy cluster, light from the explosion can be gravitationally lensed and visible along more than one line of sight. Measuring the time delay between multiply-imaged versions of a supernova increases the resolution with which the cluster's dark matter can be mapped. I intentionally scheduled my HST and VLT observations to enable the discovery and monitoring of such events. They also offer the (high risk/high reward) possibility of discovering electromagnetic counterparts to lensed gravitational waves, a new field in which our team has become a leader by developing the theoretical framework and observational strategy to detect the first gravitationally lensed gravitational wave.My UKRI FLF research programme exploits the latest multiwavelength data from world-class facilities. It uses my high-precision techniques to analyse big data, and is interpreted within the world-leading theoretical framework of Durham's state-of-the-art cosmological simulations.
到目前为止,天文学家仅观察到5%的宇宙内容:发光(或男性)物质。其余的95%是看不见的,包括所谓的暗物质和暗能量。暗物质和暗能量的本质是现代物理学中最紧迫的基本问题之一。我们宇宙的黑暗扇区仍然无法直接检测,因为两种分量都与标准物质粒子相互作用。此外,许多理论预测暗物质将在陆地实验中基本上无法检测到,并且只能由天体物理实验室探测。如果这些理论是正确的,则只能研究深色物质,而它在足够数量的重力中会影响我们周围的事物。 I propose to track the behaviour of dark matter in galaxy clusters (the most massive observable structures in the universe, also called 'cosmic beasts'), to distinguish between the 3 leading models: cold, warm and self-interacting dark matter.My FLF project exploits a dramatic increase over the past decade in observations of galaxy clusters by the world's biggest telescopes, reflecting the field's recognition as a top priority goal.我在最大的程序类别(> 100个轨道)的哈勃太空望远镜上观察时间,以获取有史以来最深的簇环境成像,以及地球上最大的望远镜(VLT)的后续光谱。我设计了这些观察结果,以通过“重力镜头”的效果来绘制簇的“暗物质”,从而扭曲和放大了群集后面的物体。我自己使用这些数据(i),(ii)来校准最大的(但浅)哈勃成像(III),以为欧几里得,雅典娜和詹姆斯·韦伯的空间telescope等设施设置和优化设施,并通过2020年。科学学模拟。集群通过彼此合并而成长;每个合并都像一个巨大的粒子对撞机。暗物质的特性通过其轨迹通过碰撞揭示,这应该是恒星和(氢)气体的碰撞。恒星和氢的特性已被充分了解,因此它们预订了暗物质的测量。传统研究计划通常将暗物质,恒星和气体分开测量,因为它们需要从不同的(红外,紫外线,X射线)望远镜观察到。我已经开发了多波长分析,以实现以前无法进行的测量,例如将暗物质和气体漏斗到簇中的时间尺度,簇的速度达到平衡的速度以及对可能的暗物质粒子相互作用的约束。我也导致建立了一项新的研究领域,自从我开始扩展了FLF以来,我已经建立了一个新的研究领域。当短暂事件(例如超新星爆炸)发生在星系集群后面时,爆炸的光线可以在多个视线上被重力镜头和可见。测量超新星的乘成像版本之间的时间延迟增加了群集的暗物质的分辨率。我故意安排了我的HST和VLT观察结果,以实现对此类事件的发现和监视。他们还提供了(高风险/高奖励)的可能性,可以发现电磁对应物与镜头重力波,这是一个新的领域,在该领域中,我们的团队通过制定理论框架和观察策略,以检测最新的多型多车辆的功能来检测最新的多型多车辆的功能。它使用我的高精度技术来分析大数据,并在达勒姆最先进的宇宙学模拟的世界领先的理论框架中进行了解释。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lensing in the Blue. II. Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing
蓝色镜头。
  • DOI:
    10.3847/1538-3881/ace7ca
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McCleary J
  • 通讯作者:
    McCleary J
Constraints on the Hubble constant from supernova Refsdal’s reappearance
超新星雷夫斯达尔再现对哈勃常数的限制
  • DOI:
    10.1126/science.abh1322
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Kelly, Patrick L.;Rodney, Steven;Treu, Tommaso;Oguri, Masamune;Chen, Wenlei;Zitrin, Adi;Birrer, Simon;Bonvin, Vivien;Dessart, Luc;Diego, Jose M.
  • 通讯作者:
    Diego, Jose M.
Beyond the ultradeep frontier fields and legacy observations (BUFFALO): a high-resolution strong+weak-lensing view of Abell 370
超越超深前沿领域和传统观测 (BUFFALO):Abell 370 的高分辨率强弱透镜视图
Exploring the correlation between dark matter, intracluster light, and globular cluster distribution in SMACS0723
探索 SMACS0723 中暗物质、簇内光和球状星团分布之间的相关性
  • DOI:
    10.1051/0004-6361/202345868
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Diego J
  • 通讯作者:
    Diego J
BUFFALO/Flashlights: Constraints on the abundance of lensed supergiant stars in the Spock galaxy at redshift 1
BUFFALO/手电筒:红移 1 处斯波克星系中透镜状超巨星丰度的限制
  • DOI:
    10.1051/0004-6361/202346761
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Diego, Jose M.;Li, Sung Kei;Meena, Ashish K.;Niemiec, Anna;Acebron, Ana;Jauzac, Mathilde;Struble, Mitchell F.;Amruth, Alfred;Broadhurst, Tom J.;Cerny, Catherine
  • 通讯作者:
    Cerny, Catherine
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathilde Jauzac其他文献

Mathilde Jauzac的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathilde Jauzac', 18)}}的其他基金

Using Cosmic Beasts to Uncover the Nature of Dark Matter
利用宇宙野兽揭示暗物质的本质
  • 批准号:
    MR/S017216/1
  • 财政年份:
    2019
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Fellowship

相似国自然基金

太阳系附近星际环境对宇宙线性质的影响
  • 批准号:
    12375103
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
暴胀宇宙中引力波背景的产生机制和观测特征研究
  • 批准号:
    12305057
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子势与宇宙加速膨胀
  • 批准号:
    12305072
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
利用LHAASO与ENDA的混合探测数据研究膝区宇宙线轻成份能谱
  • 批准号:
    12320101005
  • 批准年份:
    2023
  • 资助金额:
    210.00 万元
  • 项目类别:
    国际(地区)合作研究与交流项目
宇宙线能谱和多尺度各向异性的不均匀对流模型
  • 批准号:
    12303055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

多角的に探るアクシオン:量子測定・宇宙観測・物性・素粒子の観点から
多角度探索轴子:从量子测量、宇宙学观测、物理性质、基本粒子角度
  • 批准号:
    24KJ0838
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
イブン・アラビーの宇宙論における論理とその思想的背景
伊本·阿拉比宇宙论的逻辑及其思想背景
  • 批准号:
    24KJ0932
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
高赤方偏移銀河の元素組成比から探る宇宙最初期の星形成
基于高红移星系的元素组成探索宇宙中最早的恒星形成
  • 批准号:
    24KJ1160
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
宇宙背景放射の旋光による暗黒成分探査
通过宇宙背景辐射旋光探索暗成分
  • 批准号:
    24KJ0668
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
再使用型宇宙輸送システムのための逆行流エアインテーク空力性能に関する研究
可重复使用航天运输系统逆行进气道气动性能研究
  • 批准号:
    24K07878
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了