Using Cosmic Beasts To Uncover The Nature Of Dark Matter

利用宇宙野兽揭示暗物质的本质

基本信息

  • 批准号:
    MR/X006069/1
  • 负责人:
  • 金额:
    $ 73.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Astronomers have only observed 5% of the content of the Universe so far: the luminous (or baryonic) matter. The remaining 95% is invisible, consisting of so-called Dark Matter and Dark Energy. The nature of dark matter and dark energy is one of the most pressing fundamental questions in modern physics. This Dark Sector of our Universe has remained impossible to detect directly, because neither component interacts with standard matter particles. Moreover many theories predict dark matter will remain fundamentally undetectable in terrestrial experiments, and can only be probed by astrophysical laboratories. If these theories are correct, dark matter can only be studied where it gathers in sufficient quantities for its gravity to affect things around it we can see. I propose to track the behaviour of dark matter in galaxy clusters (the most massive observable structures in the universe, also called 'cosmic beasts'), to distinguish between the 3 leading models: cold, warm and self-interacting dark matter.My FLF project exploits a dramatic increase over the past decade in observations of galaxy clusters by the world's biggest telescopes, reflecting the field's recognition as a top priority goal. I got awarded observing time on the Hubble Space Telescope in the largest category of programme (>100 orbits) to obtain the deepest ever imaging of clusters' surroundings, plus follow-up spectroscopy from the largest telescope on Earth (VLT). I designed these observations to map clusters' dark matter, via the effect of 'gravitational lensing', which distorts and magnifies objects behind the cluster. I use these data (i) by themselves, (ii) to calibrate the largest (but shallow) Hubble imaging (iii) to set the agenda for, and optimise facilities like Euclid, Athena and the James Webb Space Telescope through the 2020s.Cosmological simulations indicate that galaxy clusters are the best laboratories to distinguish between models of dark matter, because they are still growing. Clusters grow by merging with each other; every merger acts like a gigantic particle collider. The properties of dark matter are revealed by its trajectory through a collision, which should be between that of stars and of (hydrogen) gas. The properties of stars and hydrogen are well understood, so they bookend measurements of dark matter.Traditional research programmes usually separate measurements of dark matter, stars and gas, because they require observations from different (infrared, ultraviolet, X-ray) telescopes. I have developed a multiwavelength analysis, to enable previously impossible measurements such as the time-scale on which dark matter and gas are funneled into clusters, how quickly clusters reach equilibrium, and constraints on possible dark matter particle interactions.I have also led the establishment of a new research area, which I have expanded since the start of my FLF. When transient events (such as supernova explosions) happen behind a galaxy cluster, light from the explosion can be gravitationally lensed and visible along more than one line of sight. Measuring the time delay between multiply-imaged versions of a supernova increases the resolution with which the cluster's dark matter can be mapped. I intentionally scheduled my HST and VLT observations to enable the discovery and monitoring of such events. They also offer the (high risk/high reward) possibility of discovering electromagnetic counterparts to lensed gravitational waves, a new field in which our team has become a leader by developing the theoretical framework and observational strategy to detect the first gravitationally lensed gravitational wave.My UKRI FLF research programme exploits the latest multiwavelength data from world-class facilities. It uses my high-precision techniques to analyse big data, and is interpreted within the world-leading theoretical framework of Durham's state-of-the-art cosmological simulations.
到目前为止,天文学家只观察到宇宙中5%的物质:发光(或重子)物质。剩下的95%是看不见的,由所谓的暗物质和暗能量组成。暗物质和暗能量的本质是现代物理学中最紧迫的基本问题之一。我们宇宙的这个暗区仍然不可能直接探测到,因为这两个部分都不与标准物质粒子相互作用。此外,许多理论预测,暗物质在地面实验中基本上是无法探测到的,只能通过天体物理实验室来探测。如果这些理论是正确的,那么暗物质只能在它聚集到足够多的地方进行研究,因为它的引力会影响到周围我们能看到的东西。我建议追踪星系团(宇宙中最大的可观测结构,也被称为“宇宙野兽”)中暗物质的行为,以区分三种主要模型:冷暗物质、热暗物质和自相互作用暗物质。我的FLF项目利用了过去十年来世界上最大的望远镜对星系团观测的急剧增加,反映了该领域被视为首要目标的认识。我在哈勃太空望远镜上获得了最大类别的观测时间(bbb100轨道),以获得有史以来最深入的星团周围的图像,加上地球上最大的望远镜(VLT)的后续光谱。我设计了这些观测结果,通过“引力透镜”的作用来绘制星系团的暗物质图,引力透镜会扭曲和放大星系团后面的物体。我使用这些数据(I)本身,(ii)校准最大的(但浅的)哈勃成像,(iii)为欧几里得,雅典娜和詹姆斯韦伯太空望远镜等设施设定议程并优化到2020年代。宇宙学模拟表明,星系团是区分暗物质模型的最佳实验室,因为它们仍在增长。集群通过相互融合而成长;每一次合并都像一个巨大的粒子对撞机。暗物质的性质是通过碰撞的轨迹揭示出来的,碰撞应该发生在恒星和(氢)气体之间。恒星和氢的特性已经被很好地理解,因此它们预示着暗物质的测量。传统的研究项目通常将暗物质、恒星和气体的测量分开,因为它们需要不同的望远镜(红外线、紫外线、x射线)进行观测。我已经开发了一种多波长分析,使以前不可能的测量成为可能,比如暗物质和气体聚集到星系团中的时间尺度,星系团达到平衡的速度,以及对可能的暗物质粒子相互作用的限制。我还领导建立了一个新的研究领域,自我的FLF开始以来,我一直在扩大这个研究领域。当一个星系团后面发生短暂的事件(比如超新星爆炸)时,爆炸发出的光可以被引力透镜折射,沿着一条以上的视线可见。测量超新星多重成像版本之间的时间延迟可以提高绘制星系团暗物质的分辨率。我特意安排了我的HST和VLT观测,以便发现和监测这些事件。他们还提供了(高风险/高回报)发现电磁对应物透镜引力波的可能性,这是一个新的领域,我们的团队通过开发理论框架和观测策略来探测第一个引力透镜引力波,已经成为领导者。我的UKRI FLF研究项目利用来自世界一流设施的最新多波长数据。它使用我的高精度技术来分析大数据,并在达勒姆最先进的宇宙模拟的世界领先的理论框架内进行解释。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lensing in the Blue. II. Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing
蓝色镜头。
  • DOI:
    10.3847/1538-3881/ace7ca
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McCleary J
  • 通讯作者:
    McCleary J
Constraints on the Hubble constant from supernova Refsdal’s reappearance
超新星雷夫斯达尔再现对哈勃常数的限制
  • DOI:
    10.1126/science.abh1322
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Kelly, Patrick L.;Rodney, Steven;Treu, Tommaso;Oguri, Masamune;Chen, Wenlei;Zitrin, Adi;Birrer, Simon;Bonvin, Vivien;Dessart, Luc;Diego, Jose M.
  • 通讯作者:
    Diego, Jose M.
Exploring the correlation between dark matter, intracluster light, and globular cluster distribution in SMACS0723
探索 SMACS0723 中暗物质、簇内光和球状星团分布之间的相关性
  • DOI:
    10.1051/0004-6361/202345868
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Diego J
  • 通讯作者:
    Diego J
Beyond the ultradeep frontier fields and legacy observations (BUFFALO): a high-resolution strong+weak-lensing view of Abell 370
超越超深前沿领域和传统观测 (BUFFALO):Abell 370 的高分辨率强弱透镜视图
A new step forward in realistic cluster lens mass modelling: analysis of Hubble Frontier Field Cluster Abell S1063 from joint lensing, X-ray, and galaxy kinematics data
现实星团透镜质量建模的新进步:根据联合透镜、X 射线和星系运动学数据分析哈勃前沿场星团 Abell S1063
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathilde Jauzac其他文献

Identification of more than 40 gravitationally magnified stars in a galaxy at redshift 0.725
在红移为 0.725 的星系中识别出 40 多颗引力放大的恒星
  • DOI:
    10.1038/s41550-024-02432-3
  • 发表时间:
    2025-01-06
  • 期刊:
  • 影响因子:
    14.300
  • 作者:
    Yoshinobu Fudamoto;Fengwu Sun;Jose M. Diego;Liang Dai;Masamune Oguri;Adi Zitrin;Erik Zackrisson;Mathilde Jauzac;David J. Lagattuta;Eiichi Egami;Edoardo Iani;Rogier A. Windhorst;Katsuya T. Abe;Franz Erik Bauer;Fuyan Bian;Rachana Bhatawdekar;Thomas J. Broadhurst;Zheng Cai;Chian-Chou Chen;Wenlei Chen;Seth H. Cohen;Christopher J. Conselice;Daniel Espada;Nicholas Foo;Brenda L. Frye;Seiji Fujimoto;Lukas J. Furtak;Miriam Golubchik;Tiger Yu-Yang Hsiao;Jean-Baptiste Jolly;Hiroki Kawai;Patrick L. Kelly;Anton M. Koekemoer;Kotaro Kohno;Vasily Kokorev;Mingyu Li;Zihao Li;Xiaojing Lin;Georgios E. Magdis;Ashish K. Meena;Anna Niemiec;Armin Nabizadeh;Johan Richard;Charles L. Steinhardt;Yunjing Wu;Yongda Zhu;Siwei Zou
  • 通讯作者:
    Siwei Zou

Mathilde Jauzac的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathilde Jauzac', 18)}}的其他基金

Using Cosmic Beasts to Uncover the Nature of Dark Matter
利用宇宙野兽揭示暗物质的本质
  • 批准号:
    MR/S017216/1
  • 财政年份:
    2019
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Fellowship

相似国自然基金

利用COSMIC掩星资料研究电离层赤道不规则体统计特性
  • 批准号:
    41874185
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于地基GNSS和COSMIC掩星观测资料的区域电离层模型精化方法
  • 批准号:
    41761089
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Cosmic powerhouses: The birth, death, and legacy of black hole jets
宇宙动力源:黑洞喷流的诞生、死亡和遗产
  • 批准号:
    DP240102970
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Discovery Projects
Cosmic Renaissance: The Last Chance for Planet Formation Around Dying Stars
宇宙复兴:垂死恒星周围行星形成的最后机会
  • 批准号:
    DP240101150
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Discovery Projects
Measuring the glow from our Cosmic Dawn
测量宇宙黎明发出的光芒
  • 批准号:
    DE240101377
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Discovery Early Career Researcher Award
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Research Grant
Origins and implications of cosmic explosions
宇宙爆炸的起源和影响
  • 批准号:
    DE240100433
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Discovery Early Career Researcher Award
Elucidating the Trigger and Feedback Mechanisms of the Most Concentrated Quasars at Cosmic Noon
阐明宇宙正午最集中的类星体的触发和反馈机制
  • 批准号:
    24K17084
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Diffuse Cosmic Backgrounds and the Low Surface Brightness Universe
会议:漫射宇宙背景和低表面亮度宇宙
  • 批准号:
    2405676
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Standard Grant
Revealing the drivers of galaxy formation in the densest cosmic environments
揭示最密集的宇宙环境中星系形成的驱动因素
  • 批准号:
    MR/X035166/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Fellowship
REU Site: The Physics of Waves from the Nanoscale to the Cosmic Scale
REU 站点:从纳米尺度到宇宙尺度的波物理学
  • 批准号:
    2349426
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Standard Grant
Coordinated Cosmic-Ray Observation System Conference, July 2024 in Lincoln, Nebraska
协调宇宙射线观测系统会议,2024 年 7 月在内布拉斯加州林肯市举行
  • 批准号:
    2401074
  • 财政年份:
    2024
  • 资助金额:
    $ 73.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了