ONI Nanoimager benchtop single molecule fluorescence and STORM imager LMB 2022/05
ONI Nanoimager 台式单分子荧光和 STORM 成像仪 LMB 2022/05
基本信息
- 批准号:MR/X012123/1
- 负责人:
- 金额:$ 28.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biological processes happen on many length scales. As humans, we can study ourselves at many levels, the whole body, organs, single cells or even right down to the level of specific molecular interactions. In the case of disease it is often necessary to study a process at this molecular level. A drug itself is a molecule designed to interact with a few other specific molecules within our bodies with the intent to stop or reverse a disease process. With this in mind, it is important that scientists have tools that allow them to peer into biological processes in extremely fine detail.One such tool is the light microscope. Light microscopy has a long history of giving insight into biological processes and disease processes that cannot be seen with the naked eye. However light microscopy has limits. We cannot observe life at much below the single cell level. Bacteria are for example are only just visible in even the best light microscopes. Disease causing viruses are in general too small to be seen at all. In recent years a solution to this problem has been found. We are now able to observe detail ten times or even one hundred times finer than previously possible. The trick used to do this is to highlight a molecule in a very specific manner such that it is now detectable in a light microscope. In other aspects the microscope is no different to those in use for a hundred years. Using the latest and most sensitive microscope cameras it is possible to locate that highlighted molecule with unprecedented precision. This in turn means we can establish relation ships betwen highlighted molecules on lenght scales only a few time bigger than the molecule itself. Broadly speaking this novel light microscopy method is known as superresolution microscopy. With this grant application to buy a super resolution microscope, we seek to purchase an instrument that lets us image interactions between multiple different molecule types, each highlighted in a different colour. Our goal is to understand fundamental biological processes and interactions at the molecular level. The intent is that such information gained can provide new insight into disease processes and later lead to the invention of new theraputic strategies.
生物过程发生在许多长度尺度上。作为人类,我们可以在多个层面上研究自己,包括整个身体、器官、单个细胞,甚至可以深入到特定分子相互作用的层面。就疾病而言,通常需要在分子水平上研究过程。药物本身是一种分子,旨在与我们体内的其他一些特定分子相互作用,以阻止或逆转疾病过程。考虑到这一点,科学家拥有能够以极其精细的细节观察生物过程的工具非常重要。这样的工具之一就是光学显微镜。光学显微镜在洞察肉眼无法看到的生物过程和疾病过程方面有着悠久的历史。然而光学显微镜有其局限性。我们无法在单细胞水平以下观察生命。例如,即使在最好的光学显微镜下,细菌也只能勉强可见。引起疾病的病毒通常太小,根本看不见。近年来,已经找到了该问题的解决方案。我们现在能够观察比以前精细十倍甚至一百倍的细节。实现此目的的技巧是以非常特定的方式突出显示分子,以便现在可以在光学显微镜中检测到该分子。在其他方面,显微镜与使用一百年的显微镜没有什么不同。使用最新、最灵敏的显微镜相机,可以以前所未有的精度定位突出显示的分子。这反过来意味着我们可以在仅比分子本身大几倍的长度尺度上建立突出显示的分子之间的关系。从广义上讲,这种新颖的光学显微镜方法被称为超分辨率显微镜。通过这笔购买超分辨率显微镜的拨款申请,我们寻求购买一种仪器,可以让我们对多种不同分子类型之间的相互作用进行成像,每种分子类型以不同的颜色突出显示。我们的目标是了解分子水平上的基本生物过程和相互作用。目的是获得的此类信息可以提供对疾病过程的新见解,并随后导致新治疗策略的发明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Barry其他文献
Populist politics, COVID-19, and fake news: The case of Craig Kelly
民粹主义政治、COVID-19 和假新闻:克雷格·凯利的案例
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.2
- 作者:
Nicholas Barry;Raul Sanchez - 通讯作者:
Raul Sanchez
The Dynamics of Constitutional Conventions in Westminster Democracies
威斯敏斯特民主制宪会议的动态
- DOI:
10.1093/pa/gsy027 - 发表时间:
2018 - 期刊:
- 影响因子:1.2
- 作者:
Nicholas Barry;N. Miragliotta;Z. Nwokora - 通讯作者:
Z. Nwokora
Nicholas Barry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}














{{item.name}}会员




