Energy metabolism in motor neuron diseases

运动神经元疾病中的能量代谢

基本信息

  • 批准号:
    MR/X018288/1
  • 负责人:
  • 金额:
    $ 173.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Motor neuron diseases (MNDs) are a group of fatal neurodegenerative disorders. They are characterised by the death of motor neurons, the neurons which carry the electrical information from the spinal cord to the muscles, which results in progressive paralysis. The two most common MNDs are the childhood-onset spinal muscular atrophy (SMA) and the adult-onset amyotrophic lateral sclerosis (ALS). There is no effective treatment for most forms of MNDs, including ALS, a disease with a lifetime risk of 1 in 400. Therefore, there is an urgent need to identify new therapeutic targets that will span across the range of MNDs.In order to function, all cells need energy, which is derived from food in various forms such as sugars (e.g. glucose), fat (lipids) or protein. The numerous processes occurring in the body which allow the generation of energy usable by the cell from nutrients is called energy metabolism. Metabolism is the keystone of cellular function and optimal metabolism has been associated with longevity whilst metabolic pathway dysregulation has been linked with numerous diseases, such as cancer, heart failure, but also neurodegenerative disorders. The human brain is estimated to consume ~20 % of the total body energy supply, whilst it only represents 2 % of body weight. This highlights the major metabolic requirement of the brain and more generally of the central nervous system (brain and spinal cord). My hypothesis is that the spinal cord is energy starved and that sustaining cellular energy could represent a promising therapeutic strategy.To evaluate my hypothesis, I will study the metabolism in two mouse models of MNDs, a model of ALS and a model of SMA. This side-by-side analysis will allow identification of common changes, hence identification of more robust therapeutic targets. Finally, validation of these targets in patients' samples will be key to increase translation potential. My first objective will be to assess metabolism in these two mouse models across organs at multiple time points and across multiple organs before the clinical signs start and as the signs progress using varied techniques such as untargeted mass spectrometry and assays to evaluate mitochondrial function, the powerhouse of the cell. Looking at multiple organs is important, as although the main clinical signs relate to spinal cord disease, pathological changes have been identified in other organs in MND patients. Overall, this objective will allow identification of the critical point when metabolism switch occurs and is key to evaluate the importance of metabolic changes to disease progression. My second objective will look in greater depth at spinal cord metabolism. Indeed, the spinal cord is not only composed of neurons of various types but also of a more abundant population of cells called the glial cells. These cells have various subtypes but they overall play a key role in the support and maintenance of neuronal function. Surprisingly, the exact role of these glial cells in normal spinal cord metabolism is poorly known. Using state-of-the-art mass spectrometry imaging, I will assess the relative contribution of glial cells and neurons into the overall spinal cord metabolism in normal mice and in MND mice. I anticipate this will allow a better understanding of why some neurons within the spinal cord are more susceptible to the disease than others. Finally, the changes identified in the first two objectives will be confirmed on patients' derived samples of SMA and ALS. This is key to confirm the relevance of these pathways to human pathology. Subsequently, the main targets will then be brought forward and their therapeutic potential will be evaluated by testing whether modulating these metabolic pathways can help reverse the pathological changes in patient derived cell cultures of MNDs. Ultimately, the aim of this project is to identify and confirm common targets across MNDs, from which we can design new therapies.
运动神经元疾病(mnd)是一组致命的神经退行性疾病。它们的特点是运动神经元死亡,运动神经元负责将脊髓的电信息传递给肌肉,导致进行性瘫痪。两种最常见的mnd是儿童期发病的脊髓性肌萎缩症(SMA)和成年发病的肌萎缩侧索硬化症(ALS)。大多数形式的老年痴呆症都没有有效的治疗方法,包括ALS,这种疾病的终生风险为1 / 400。因此,迫切需要确定新的治疗靶点,这些靶点将跨越心智障碍的范围。为了发挥功能,所有细胞都需要能量,而能量来源于各种形式的食物,如糖(如葡萄糖)、脂肪(脂质)或蛋白质。体内发生的使细胞从营养物质中产生可用能量的许多过程被称为能量代谢。代谢是细胞功能的基石,最佳代谢与长寿有关,而代谢途径失调与许多疾病有关,如癌症、心力衰竭和神经退行性疾病。据估计,人类大脑消耗了全身能量供应的20%,而它只占体重的2%。这突出了大脑的主要代谢需求,更广泛地说,是中枢神经系统(大脑和脊髓)的代谢需求。我的假设是,脊髓能量匮乏,维持细胞能量可能是一种很有前途的治疗策略。为了验证我的假设,我将研究两个mnd小鼠模型的代谢,一个是ALS模型,一个是SMA模型。这种并排分析将允许识别共同的变化,从而确定更强大的治疗靶点。最后,在患者样本中验证这些靶点将是提高翻译潜力的关键。我的第一个目标将是评估这两种小鼠模型在多个时间点和多个器官的代谢,在临床症状开始之前,随着症状的进展,使用各种技术,如非靶向质谱法和测定来评估线粒体功能,细胞的动力。多器官检查很重要,因为尽管主要临床症状与脊髓疾病有关,但MND患者的其他器官也发现了病理变化。总的来说,这一目标将允许确定代谢开关发生的临界点,并且是评估代谢变化对疾病进展重要性的关键。我的第二个目标是更深入地研究脊髓代谢。的确,脊髓不仅由各种类型的神经元组成,而且还由更丰富的称为神经胶质细胞的细胞群组成。这些细胞有不同的亚型,但它们在支持和维持神经元功能方面发挥着关键作用。令人惊讶的是,这些神经胶质细胞在正常脊髓代谢中的确切作用尚不清楚。使用最先进的质谱成像,我将评估神经胶质细胞和神经元在正常小鼠和MND小鼠的整体脊髓代谢中的相对贡献。我希望这能让我们更好地理解为什么脊髓中的一些神经元比其他神经元更容易受到这种疾病的影响。最后,前两个目标中确定的变化将在SMA和ALS患者的衍生样本上得到证实。这是确认这些通路与人类病理相关性的关键。随后,将提出主要靶点,并通过测试调节这些代谢途径是否有助于逆转患者来源的MNDs细胞培养中的病理变化来评估其治疗潜力。最终,这个项目的目的是确定和确认mnd的共同目标,我们可以据此设计新的治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kiterie Faller其他文献

Kiterie Faller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

一碳代谢(One carbon metabolism)介导上调的 PD1/PDL1 驱动 肿瘤免疫逃逸
  • 批准号:
    2024JJ9491
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
  • 批准号:
    82371332
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
NPM1表观重塑巨噬细胞代谢及修复表型在心肌缺血损伤中的调控作用
  • 批准号:
    82371825
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
海马神经元胆固醇代谢重编程致染色质组蛋白乙酰化水平降低介导老年小鼠术后认知功能障碍
  • 批准号:
    82371192
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
“肠—肝轴”PPARα/CYP8B1胆汁酸合成信号通路在减重手术改善糖脂代谢中的作用与机制
  • 批准号:
    82370902
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
转运蛋白RCP调控巨噬细胞脂肪酸氧化参与系统性红斑狼疮发病的机制研究
  • 批准号:
    82371798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
DACH1对糖尿病肾病足细胞脂质代谢的调控作用和机制研究
  • 批准号:
    82370719
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Grem2通过BMPR-Smad1/5/8-PGC1α通路调控线粒体能量代谢在糖尿病肾病足细胞损伤中的机制研究
  • 批准号:
    82370819
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TRPV2在原发性肝癌中癌变作用的研究
  • 批准号:
    81171933
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Effect of high fat diet on the circadian system and on circadian rhythms in energy intake and expenditure
高脂肪饮食对昼夜节律系统以及能量摄入和支出的昼夜节律的影响
  • 批准号:
    10632907
  • 财政年份:
    2023
  • 资助金额:
    $ 173.63万
  • 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
  • 批准号:
    10714863
  • 财政年份:
    2023
  • 资助金额:
    $ 173.63万
  • 项目类别:
The dorsomedial hypothalamus integrates temperature and energy sensing signals to regulate energy expenditure.
下丘脑背内侧整合温度和能量传感信号来调节能量消耗。
  • 批准号:
    10464727
  • 财政年份:
    2022
  • 资助金额:
    $ 173.63万
  • 项目类别:
Synaptic and circuit mechanisms of central GLP-1 signaling in energy balance
能量平衡中枢 GLP-1 信号传导的突触和电路机制
  • 批准号:
    10659252
  • 财政年份:
    2022
  • 资助金额:
    $ 173.63万
  • 项目类别:
Synaptic and circuit mechanisms of central GLP-1 signaling in energy balance
能量平衡中枢 GLP-1 信号传导的突触和电路机制
  • 批准号:
    10530796
  • 财政年份:
    2022
  • 资助金额:
    $ 173.63万
  • 项目类别:
The dorsomedial hypothalamus integrates temperature and energy sensing signals to regulate energy expenditure.
下丘脑背内侧整合温度和能量传感信号来调节能量消耗。
  • 批准号:
    10619445
  • 财政年份:
    2022
  • 资助金额:
    $ 173.63万
  • 项目类别:
Circadian Regulation of the Dorsomedial Hypothalamic Nucleus and Its Impact on Energy Homeostasis
下丘脑背内侧核的昼夜节律调节及其对能量稳态的影响
  • 批准号:
    10551723
  • 财政年份:
    2021
  • 资助金额:
    $ 173.63万
  • 项目类别:
Role of VTA Neurotensin Receptor-1 Expressing Neurons in Energy Balance
VTA 神经降压素受体 1 表达神经元在能量平衡中的作用
  • 批准号:
    10226290
  • 财政年份:
    2019
  • 资助金额:
    $ 173.63万
  • 项目类别:
INTEGRative multi-OMICs approaches on iPSC-derived 2D and 3D models to elucidate the role of immune and energy metabolism related genes/pathways in Amyotrophic Lateral Sclerosis
对 iPSC 衍生的 2D 和 3D 模型进行综合多组学方法,以阐明免疫和能量代谢相关基因/途径在肌萎缩侧索硬化症中的作用
  • 批准号:
    387428
  • 财政年份:
    2018
  • 资助金额:
    $ 173.63万
  • 项目类别:
    Operating Grants
Energy Reserves, Physical Activity, and Alzheimer's Disease in the Baltimore Longitudinal Study of Aging
巴尔的摩衰老纵向研究中的能量储备、体力活动和阿尔茨海默病
  • 批准号:
    9421913
  • 财政年份:
    2017
  • 资助金额:
    $ 173.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了