Peptide-Specific Natural Killer Cell Receptors in Health and Disease

健康和疾病中的肽特异性自然杀伤细胞受体

基本信息

  • 批准号:
    MR/X020746/1
  • 负责人:
  • 金额:
    $ 288.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Cells of the immune system must differentiate friend from foe. They achieve this by using cell surface protein machines called receptors that can 'see' signs of infection or cancers. When receptors 'see' their targets, immune cells spring into action, and some will kill the target cells and alert other cells to the site of danger by producing molecular messages. Different immune cells use different combinations of receptors to detect their targets. Developing new medicines to treat infections and cancer requires understanding how immune cells and their receptors detect their targets. One mechanism the immune system uses to detect their targets is called the 'HLA antigen presentation pathway'. HLA proteins are specialized molecules found on almost all cells that have the unique ability to capture small fragments (peptides) from inside the cell and place them on the cell surface. During infections and cancer, those peptides have different amino acid sequences to those not normally found on healthy cells can be 'seen' by immune cells using their specialized receptors. For many years, we've known that immune cells called T cells are very good at detecting these HLA presented peptides and use a special peptide detecting receptor called the T cell receptor (TCR). Recently, my research and others have shown that receptors expressed on a different immune cell, natural killer (NK) cells, also detect these peptides. However, in contrast to TCRs, very little is known about these peptide-specific natural killer cell receptors (PSNKR). The goal of this project is to develop a comprehensive understanding of how PSNKRs contribute to immunity. Natural killer (NK) cells are specialized immune cells with the capacity to kill infected cells and tumours. The PSNKRs include receptors called NKG2C, NKp44 and some members of the killer-cell immunoglobulin-like receptors (KIR) family. The first goal of the project will be to define PSNKR using novel screening technologies. I have expertise in studying KIR and recently developed screens to define KIR peptide-specificity of KIR, while the specificities of NKG2C and NKp44 will be defined through collaborations. The data from these screens will feed algorithms that can predict whether any HLA presented peptide will bind PSNKRs or not. The peptides presented by HLA proteins are called the 'immunopeptidome' and the identity (amino acid sequence) of these peptides differs between cells types and in disease conditions. The identity of these peptides under different diseases are unknown. Through collaborations, immunopeptidomes will be defined from cells implicated in multiple human diseases including HIV infection, cancer and pre-eclampsia (a disorder of pregnancy). These peptides will then be tested for PSNKR binding, facilitated by prediction algorithms, and then tested their ability to activate NK cells. After identifying functional PSNKR ligands, methods to manipulate immunopeptidomes to increase the frequency of PSNKR binding peptides will be deployed. One method will develop a new technology called Antibody-peptide epitope conjugates (APEC). APECs can deliver peptides to the cell surface of HLA proteins and activate T cells, redirecting them towards tumours. I will develop APECs to target PSNKRs, a potentially novel medicine that can redirect NK cells towards target cells. NK cells express many different receptors in addition to PSNKRs. My final goal will be to investigate how NK cells integrate signals from PSNKRs and other activating receptors. NK cell activation will be controlled by carefully dosing HLA proteins in the presence of proteins that bind other NK cell receptors. This will help model how PSNKRs respond to target cells in different disease contexts. Together this research program will provide molecular insight into a poorly understood receptor family and their role in multiple human diseases, facilitating development of novel molecular medicines.
免疫系统的细胞必须区分敌友。他们通过使用称为受体的细胞表面蛋白质机器来实现这一点,这些受体可以“看到”感染或癌症的迹象。当受体“看到”它们的目标时,免疫细胞就会开始行动,一些细胞会杀死目标细胞,并通过产生分子信息来提醒其他细胞注意危险部位。不同的免疫细胞使用不同的受体组合来检测它们的目标。开发治疗感染和癌症的新药需要了解免疫细胞及其受体如何检测它们的靶点。免疫系统用来检测其目标的一种机制被称为“HLA抗原呈递途径”。HLA蛋白是几乎所有细胞上发现的特殊分子,具有从细胞内捕获小片段(肽)并将其置于细胞表面的独特能力。在感染和癌症期间,这些肽具有与健康细胞上通常不存在的氨基酸序列不同的氨基酸序列,可以被免疫细胞使用其专门的受体“看到”。多年来,我们已经知道称为T细胞的免疫细胞非常擅长检测这些HLA呈递肽,并使用称为T细胞受体(TCR)的特殊肽检测受体。最近,我和其他人的研究表明,在不同的免疫细胞,自然杀伤(NK)细胞上表达的受体也检测到这些肽。然而,与TCR相反,对这些肽特异性自然杀伤细胞受体(PSNKR)知之甚少。该项目的目标是全面了解PSNKRs如何有助于免疫。自然杀伤(NK)细胞是具有杀死受感染细胞和肿瘤能力的特化免疫细胞。PSNKRs包括称为NKG 2C、NKp 44的受体和巨噬细胞免疫球蛋白样受体(KIR)家族的一些成员。该项目的第一个目标将是使用新的筛选技术来定义PSNKR。我有研究KIR的专业知识,最近开发了筛选来定义KIR的KIR肽特异性,而NKG 2C和NKp 44的特异性将通过合作来定义。来自这些筛选的数据将提供可以预测任何HLA呈递的肽是否将结合PSNKR的算法。由HLA蛋白呈现的肽被称为“免疫肽组”,这些肽的身份(氨基酸序列)在细胞类型和疾病状况之间存在差异。这些肽在不同疾病下的身份是未知的。通过合作,免疫肽将从涉及多种人类疾病的细胞中定义,包括HIV感染,癌症和先兆子痫(妊娠障碍)。然后测试这些肽的PSNKR结合,通过预测算法促进,然后测试它们激活NK细胞的能力。在鉴定功能性PSNKR配体之后,将部署操纵免疫肽组以增加PSNKR结合肽的频率的方法。其中一种方法将开发一种称为抗体-肽表位缀合物(APEC)的新技术。APEC可以将肽递送到HLA蛋白的细胞表面并激活T细胞,将它们重定向到肿瘤。我将开发针对PSNKRs的APEC,这是一种潜在的新药,可以将NK细胞重新导向靶细胞。NK细胞表达除PSNKR之外的许多不同受体。我的最终目标是研究NK细胞如何整合来自PSNKRs和其他激活受体的信号。在存在结合其他NK细胞受体的蛋白质的情况下,通过仔细给药HLA蛋白来控制NK细胞活化。这将有助于模拟PSNKRs在不同疾病背景下如何响应靶细胞。这项研究计划将为一个知之甚少的受体家族及其在多种人类疾病中的作用提供分子见解,促进新型分子药物的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malcolm Sim其他文献

Compensation claims for occupational noise induced hearing loss between 1998 and 2008: yearly incidence rates and trends in older workers
  • DOI:
    10.1111/1753-6405.12460
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samia Radi;Geza Benke;Frederieke Schaafsma;Malcolm Sim
  • 通讯作者:
    Malcolm Sim
Atlas: a brain for self-driving laboratories
阿特拉斯:自动驾驶实验室的大脑
  • DOI:
    10.1039/d4dd00115j
  • 发表时间:
    2025-01-31
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Riley J. Hickman;Malcolm Sim;Sergio Pablo-García;Gary Tom;Ivan Woolhouse;Han Hao;Zeqing Bao;Pauric Bannigan;Christine Allen;Matteo Aldeghi;Alán Aspuru-Guzik
  • 通讯作者:
    Alán Aspuru-Guzik
723 Occupational exposure and lung function decline in population-based studies: a systematic review and meta-analysis
  • DOI:
    10.1016/s2093-7911(22)00101-9
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Golam Rabbani;Naima Nimmi;Geza Benke;Shyamali Dharmage;Dinh Bui;Malcolm Sim;Michael Abramson;Sheikh Alif
  • 通讯作者:
    Sheikh Alif
Acetylcholinesterase inhibition and Gulf War illnesses: Conclusions are not supported by independent reviews of the same evidence
乙酰胆碱酯酶抑制和海湾战争疾病:结论没有得到相同证据的独立审查的支持
‘Post-deployment appraisal’ and the relationship with stress and psychological health in Australian veterans
  • DOI:
    10.1007/s00127-015-1054-x
  • 发表时间:
    2015-09-18
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Breanna Wright;Andrew Forbes;Helen Kelsall;David Clarke;Jill Ikin;Malcolm Sim
  • 通讯作者:
    Malcolm Sim

Malcolm Sim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

花胶鱼类物种Species-specific PCR和Multiplex PCR鉴定体系研究
  • 批准号:
    31902373
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sex Specific Regulation of B1 B Cell Self-Renewal and Natural Antibody Production
B1 B 细胞自我更新和天然抗体产生的性别特异性调节
  • 批准号:
    10751901
  • 财政年份:
    2023
  • 资助金额:
    $ 288.6万
  • 项目类别:
Targeting breast cancer via site-specific antibody-drug conjugates based on biosynthetically modified enediyne natural products
通过基于生物合成修饰的烯二炔天然产物的位点特异性抗体药物缀合物靶向乳腺癌
  • 批准号:
    514898299
  • 财政年份:
    2022
  • 资助金额:
    $ 288.6万
  • 项目类别:
    WBP Fellowship
Hypoxic-specific activation of natural killer cells: Being resilient in the tumor microenvironment
自然杀伤细胞的低氧特异性激活:在肿瘤微环境中具有弹性
  • 批准号:
    444291
  • 财政年份:
    2021
  • 资助金额:
    $ 288.6万
  • 项目类别:
    Operating Grants
RAPID: Adaptive immunity in bats: foundational knowledge for assessing specific pathogen responses in natural coronavirus reservoirs
RAPID:蝙蝠的适应性免疫:评估天然冠状病毒储存库中特定病原体反应的基础知识
  • 批准号:
    2032157
  • 财政年份:
    2020
  • 资助金额:
    $ 288.6万
  • 项目类别:
    Standard Grant
Drug discovery research using Omura natural compounds and disease-specific iPS cells
使用 Omura 天然化合物和疾病特异性 iPS 细胞进行药物发现研究
  • 批准号:
    20K06914
  • 财政年份:
    2020
  • 资助金额:
    $ 288.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Role of Natural Antibodies Against Oxidation Specific Epitopes in Bone Homeostasis
抗氧化特异性表位的天然抗体在骨稳态中的作用
  • 批准号:
    10477223
  • 财政年份:
    2019
  • 资助金额:
    $ 288.6万
  • 项目类别:
Role of Natural Antibodies Against Oxidation Specific Epitopes in Bone Homeostasis
抗氧化特异性表位的天然抗体在骨稳态中的作用
  • 批准号:
    10200660
  • 财政年份:
    2019
  • 资助金额:
    $ 288.6万
  • 项目类别:
Role of Natural Antibodies Against Oxidation Specific Epitopes in Bone Homeostasis
抗氧化特异性表位的天然抗体在骨稳态中的作用
  • 批准号:
    9974993
  • 财政年份:
    2019
  • 资助金额:
    $ 288.6万
  • 项目类别:
Continuous Flow Silyl Ether Exchange Methodologies to Achieve Site-Specific Functionalization of Polydroxylic Natural Products
连续流硅醚交换方法实现聚羟基天然产物的位点特异性功能化
  • 批准号:
    1902488
  • 财政年份:
    2019
  • 资助金额:
    $ 288.6万
  • 项目类别:
    Standard Grant
Role of natural antibodies against oxidation specific epitopes in bone homeostasis
抗氧化特异性表位的天然抗体在骨稳态中的作用
  • 批准号:
    9415546
  • 财政年份:
    2018
  • 资助金额:
    $ 288.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了