(Un)Fair inequality in the labor market: A global study

(Un)劳动力市场的公平不平等:一项全球研究

基本信息

  • 批准号:
    MR/X033333/1
  • 负责人:
  • 金额:
    $ 185.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

"Every human society must justify its inequalities: unless reasons for them are found, the whole political and social edifice stands in danger of collapse" - Thomas PikettyHow do citizens of different societies perceive the fairness of inequalities? Answering this question is key to understanding increasing social tensions, and informing the design of policies that address the current and widespread discontent with existing economic and political institutions.There are two reasons why citizens may perceive inequalities as unfair. First, actual inequalities may not square with their fairness preferences, e.g., people may dislike the extent of gender pay gaps, or they may think that the returns to long working hours are too low. Second, they may have biased beliefs about actual inequality, e.g., people may overestimate the size of gender pay gaps, or they may underestimate the earnings effects of working hours. These examples illustrate that an understanding of fairness perceptions requires in-depth knowledge of citizens' fairness preferences and their beliefs about inequality in different domains of the labor market. However, to date, there is no harmonized data collection that integrates these elements and enables us to measure perceived unfairness and understand its consequences for society on a global scale. As a consequence, our current knowledge is either based on strong assumptions about peoples' fairness preferences and beliefs about inequality, or confined to single-country studies that cannot take account of the diversity of perceptions across countries with different geographic, cultural, and economic characteristics.In my FLF, I will address this gap. I will lead a network of stakeholders including the general public, policymakers, and scientists to identify domains of labor market inequality that are at the core of fairness perceptions; collect corresponding data on preferences and beliefs about labor market inequality in 50 countries worldwide; and construct measures of perceived unfairness that allow us to assess the implications of perceived unfairness for important societal outcomes that are essential building blocks for well-functioning societies.In years 1-4, I will divide my FLF into three working packages (WPs):WP1 - Develop a measurement framework and associated survey module taking into account the views of key stakeholders such as the general public, policymakers, and academics from diverse cultural and economic backgrounds (Years 1-2).WP2 - Collect harmonized data on fairness preferences and inequality beliefs in 50 countries (incl. the four nations of the UK) representing a broad range of geographic, cultural, and economic characteristics (Years 2-3).WP3 - Analyze the anatomy of perceived unfairness and its implications for societal outcomes including support for democracy, trust in institutions, and support for public policies (Years 3-4).In years 5-7, I will build on the initial findings and use both field experiments and quasi-experimental variation from policy reforms to investigate whether preferences and beliefs regarding different domains of labor market inequality are malleable by policy intervention. Thereby, I will provide important insights for civil society organizations and policymakers on how to address perceived unfairness and discontent with current economic systems.This agenda will improve our understanding of one of the most widely debated social issues of our times: unfair inequality in labor markets. I will analyze this phenomenon on a global scale while integrating the perspectives of a diverse set of stakeholders. My FLF combines an ambitious and multidisciplinary research programme that will generate a series of high-profile journal articles with a personalized programme for my professional development. These elements make the FLF a unique opportunity to establish myself as a leading expert regarding inequality and fairness in Europe and beyond.
“每一个人类社会都必须证明其不平等是正当的:除非找到不平等的理由,否则整个政治和社会体系都有崩溃的危险”--托马斯·皮凯蒂不同社会的公民如何看待不平等的公平性?探讨这个问题是理解日益加剧的社会紧张局势的关键,也是制定政策以解决当前对现有经济和政治制度普遍不满的关键。首先,实际的不平等可能与他们的公平偏好不一致,例如,人们可能不喜欢男女工资差距的程度,或者他们可能认为长时间工作的回报太低。其次,他们可能对实际的不平等有偏见,例如,人们可能高估了性别工资差距的大小,或者低估了工作时间对收入的影响。这些例子说明,要理解公平观念,就需要深入了解公民的公平偏好及其对劳动力市场不同领域不平等的看法。然而,迄今为止,还没有统一的数据收集,将这些要素整合在一起,使我们能够衡量感知到的不公平现象,并了解其在全球范围内对社会的影响。因此,我们现有的知识要么是基于对人们的公平偏好和不平等信念的强有力假设,要么局限于单一国家的研究,无法考虑到具有不同地理、文化和经济特征的国家之间的看法差异。在我的FLF中,我将解决这一差距。我将领导一个包括公众、政策制定者和科学家在内的利益相关者网络,以确定劳动力市场不平等的领域,这些领域是公平观念的核心;收集全球50个国家关于劳动力市场不平等的偏好和信念的相应数据;并构建感知不公平的衡量标准,使我们能够评估感知不公平对重要社会结果的影响,在第1-4年,我将把我的FLF分为三个工作包(WP):WP 1-制定一个衡量框架和相关的调查模块,同时考虑到来自不同文化和经济背景的公众、政策制定者和学者等关键利益相关者的观点(第1-2年)。WP 2-收集50个国家(包括20个国家)关于公平偏好和不平等信念的统一数据。代表广泛的地理、文化和经济特征的四个民族(2-3年). WP 3-分析感知的不公平及其对社会结果的影响,包括对民主的支持,对机构的信任和对公共政策的支持(3-4年级)。在5-7年级,我将建立在初步的调查结果,并使用现场实验和准-从政策改革的实验变异,以调查是否偏好和信念的不同领域的劳动力市场的不平等是可塑性的政策干预。因此,我将为民间社会组织和政策制定者提供重要的见解,如何解决对当前经济制度的不公平和不满。这一议程将提高我们对当今时代最广泛争论的社会问题之一的理解:劳动力市场的不公平不平等。我将在全球范围内分析这一现象,同时整合不同利益相关者的观点。我的FLF结合了一个雄心勃勃的多学科研究计划,将产生一系列高知名度的期刊文章,并为我的专业发展提供个性化的计划。这些因素使FLF成为一个独特的机会,使自己成为欧洲及其他地区不平等和公平问题的领先专家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Hufe其他文献

Learning income levels and inequality from spatial and sociodemographic data in Germany
  • DOI:
    10.1016/j.apgeog.2023.103058
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Oana M. Garbasevschi;Hannes Taubenböck;Paul Schüle;Julia Baarck;Paul Hufe;Michael Wurm;Andreas Peichl
  • 通讯作者:
    Andreas Peichl

Paul Hufe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

FAIR-数据驱动新材料研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
PANDA/FAIR上粲重子产生的理论研究
  • 批准号:
    11247298
  • 批准年份:
    2012
  • 资助金额:
    5.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Tri-fair Biometrics: 生体認証の3要件を満たす公平な生体認証システムの実現
Tri-fair Biometrics:实现公平的生物识别认证系统,满足生物识别认证的三个要求
  • 批准号:
    23K28085
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fair Game: valuing the bio-cultural heritage of fallow deer and their venison for food security, sustainable woodlands and biodiversity
公平游戏:重视小鹿及其鹿肉的生物文化遗产,以促进粮食安全、可持续林地和生物多样性
  • 批准号:
    AH/Z505675/1
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Research Grant
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Continuing Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
  • 批准号:
    2319742
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Standard Grant
Fair and modular blockchain data infrastructure for open science and society (FairOnChain)
用于开放科学和社会的公平和模块化区块链数据基础设施(FairOnChain)
  • 批准号:
    EP/Y036247/1
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Research Grant
Making Software FAIR: A machine-assisted workflow for the research software lifecycle
让软件公平:研究软件生命周期的机器辅助工作流程
  • 批准号:
    EP/Y036352/1
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Research Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Continuing Grant
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Y03743X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 185.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了