Computational Statistics to Tackle Modern Slavery

解决现代奴隶制问题的计算统计

基本信息

  • 批准号:
    MR/X034992/1
  • 负责人:
  • 金额:
    $ 147.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

If we are to meet the United Nation's Sustainable Development Goals by their target of 2030, we need to develop better statistical methods to map the prevalence of vulnerable populations. In this fellowship, I will A. carry out foundational research into effective computational statistics methods for hidden populations, B. use the methods to map modern slavery at local, national and international levels, and C. work with my project partners to change policy based on our evidence-based research. To meet the Sustainable Development Goals, we need to measure how close we are to meeting them, quantify who is most in need of support and evaluate how successful interventions are in creating sustainable development. Take, for example, victims of modern slavery. Victims are often marginalised and hidden, with abuses going unreported and unmonitored. Estimating how many victims there are, where the abuses are happening and evaluating the effectiveness of interventions to support victims remain a challenge to the field of modern slavery and sustainable development more broadly. Data about victims and abuses is often noisy, poor quality or simply not collected. Developments in computational statistics can be really powerful here. They will provide a framework to deal with poor quality and missing data, while simultaneously avoiding specific and arbitrary assumptions about how the abuses are happening. Current methods require researchers to make specific assumptions about the abuses they are modelling which are difficult to justify from the data. The methods I develop will move away from this, instead making more general, mathematical assumptions. This will allow the data to speak for itself and can provide better counterfactual evidence and more realistic conclusions. To meet this aim, I bring a strong track record of developing these methods for epidemics, where my methods have been shown to reduce the need for specific assumptions when the data is poor quality. However, this flexibility comes at the cost of a larger computational burden, increased uncertainty in the results, and a requirement for technical expertise when using the methods. To speed up progress to meeting the Sustainable Development Goals, researchers need methods that can be used in practice. I will lead the development of effective computational statistical methods. By reducing the computational burden, providing mechanisms to deal with the uncertainty in the results, and making methods easy to implement, they will become much more attractive to non-statisticians. I have already shown how my developments can considerably reduce the data collection burden when mapping poverty, making these methods more attractive to research and organisations working in poverty reduction. A key part of this fellowship is collaboration with a research software engineer who can develop data systems and software that other researchers and organisations can use to implement my methods. I will use my methods to solve pressing problems in modern slavery and advance the field to meet the UN's goal to end slavery by 2030. I will work with my project partners to map modern slavery at local, national and international levels. This fellowship has the potential to save lives and show how computational statistics can advance progress towards the Sustainable Development Goals. By leveraging support from my project partners, I will influence politicians and policy makers to use my results to safeguard victims and prevent potential victims from suffering from modern slavery abuses.
如果我们要在2030年之前实现联合国可持续发展目标,我们需要开发更好的统计方法来绘制弱势群体的普遍性。在这场比赛中,我将A。开展有效的隐种群计算统计方法的基础研究,B。使用这些方法来绘制地方、国家和国际层面的现代奴隶制地图,以及C.与我的项目合作伙伴合作,根据我们的循证研究改变政策。为了实现可持续发展目标,我们需要衡量我们离实现这些目标有多近,量化谁最需要支持,并评估干预措施在创造可持续发展方面的成功程度。例如,现代奴隶制的受害者。受害者往往被边缘化和隐藏,虐待行为得不到报告和监督。估计有多少受害者,在哪里发生虐待和评估干预措施的有效性,以支持受害者仍然是现代奴隶制和更广泛的可持续发展领域的一个挑战。关于受害者和虐待行为的数据往往是嘈杂的,质量差或根本没有收集。计算统计学的发展在这方面非常强大。它们将提供一个框架来处理质量差和缺失的数据,同时避免对侵权行为如何发生的具体和武断的假设。目前的方法要求研究人员对他们正在建模的滥用行为做出具体假设,而这些假设很难从数据中得到证明。我开发的方法将远离这一点,而是做出更一般的数学假设。这将使数据能够为自己说话,并可以提供更好的反事实证据和更现实的结论。为了实现这一目标,我带来了开发这些流行病方法的良好记录,当数据质量差时,我的方法已被证明可以减少对特定假设的需求。然而,这种灵活性的代价是更大的计算负担,结果的不确定性增加,以及在使用这些方法时需要技术专长。为了加快实现可持续发展目标的进程,研究人员需要可用于实践的方法。我将领导有效的计算统计方法的发展。通过减少计算负担,提供处理结果不确定性的机制,以及使方法易于实现,它们将对非统计学家更具吸引力。我已经展示了我的发展如何在绘制贫困地图时大大减少数据收集负担,使这些方法对从事减贫工作的研究和组织更具吸引力。这个奖学金的一个关键部分是与研究软件工程师合作,他可以开发其他研究人员和组织可以用来实现我的方法的数据系统和软件。我将用我的方法来解决现代奴隶制中的紧迫问题,并推动该领域实现联合国到2030年结束奴隶制的目标。我将与我的项目合作伙伴合作,绘制地方、国家和国际层面的现代奴隶制地图。该奖学金有可能拯救生命,并展示计算统计如何推动可持续发展目标的进展。通过利用我的项目合作伙伴的支持,我将影响政治家和政策制定者使用我的结果来保护受害者,并防止潜在的受害者遭受现代奴隶制的虐待。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rowland Seymour其他文献

Rowland Seymour的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

REU Site: DRUMS Directed Research for Undergraduates in Math and Statistics
REU 网站:DRUMS 为数学和统计学本科生指导的研究
  • 批准号:
    2349611
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Research Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
  • 批准号:
    EP/X042812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Fellowship
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
  • 批准号:
    2340482
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Continuing Grant
MRC International Statistics & Epidemiology Partnership (ISEP): Strengthening capacity in applied medical statisticians in sub-Saharan Africa
MRC国际统计
  • 批准号:
    MR/X019888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Research Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
  • 批准号:
    2316289
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Standard Grant
Conference: The 2024 Joint Research Conference on Statistics in Quality, Industry, and Technology (JRC 2024) - Data Science and Statistics for Industrial Innovation
会议:2024年质量、工业和技术统计联合研究会议(JRC 2024)——数据科学与统计促进产业创新
  • 批准号:
    2404998
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Standard Grant
Conference: Statistics in the Age of AI
会议:人工智能时代的统计
  • 批准号:
    2349991
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Standard Grant
Stochastic maximal inequalities for semimartingales and their applications to statistics
半鞅的随机最大不等式及其在统计中的应用
  • 批准号:
    24K14866
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了