Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
基本信息
- 批准号:MR/Y011635/1
- 负责人:
- 金额:$ 75.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photosystems are the complex molecular assemblies of photosynthesis, they generate the energy that sustain nearly all the biosphere, directly powering the global fixation of about a hundred gigatons of carbon dioxide annually. Photosynthesis uses two photosystems working in series: photosystem II and photosystem I. Photosystem II harvests light to power the oxidation and decomposition of water into protons, electrons, and the oxygen we breathe. Photosystem I harvests light to generate the power needed to drive metabolic reactions, importantly, but not exclusively, carbon dioxide fixation. These properties make the photosystems amongst the most powerful enzymes in the history of life, both capable of driving their own difficult chemistry using light.My long-term vision is to use evolution-based methods to completely redesign the photosystems so that we can harness their properties to do useful chemistry beyond their naturally evolved function. I want to develop a technological platform that enables exquisite control of both photosystems to achieve bespoke multi-step light-driven oxidative or reductive biocatalysis. Eventually, I envision this platform linked to a research facility that allows for the rapid and high-throughput purification, characterisation, and production of these novel photosystems for a broad range of applications, from bioremediation to precision chemistry, all driven by light. Therefore, this technology can benefit and impact the biotechnology and chemical industry by creating new ways to perform clean chemical reactions.In this extension, I continue the work that was started in the first stage of the fellowship. My lab is currently developing, optimising, and characterising directed evolution approaches that target photosystem II to change its functional properties beyond its naturally evolved function. Directed evolution is an extremely versatile approach that is used to change the traits, or the activity of a given enzyme by exploiting evolution. It can be done simply by subjecting an organism through repeated cycles of selection under the conditions that favour the desired traits or by screening for the desired function, it can be enhanced by turbocharging mutational rates (hypermutation), it can be focused on a single gene of interest, parts of a gene, or multiple genes. Hypermutation can be done in vitro, where the genes are mutated in the test tube; or in vivo, where hypermutation occurs as the cells divide and replicate. My lab has a working in vitro system that we have already used to isolate several photosystem II variants harbouring a range of mutations and are about to deploy and in vivo CRISPR-based hypermutation system.The idea of applying directed evolution to engineer novel photosystems is without precedent. While directed evolution is a somewhat of a mature technology, it has not been extensively applied to complex enzymatic systems like the photosystems, if at all. In addition, the development of directed evolution approaches in photosynthetic organisms also lags compared with non-photosynthetic systems like E. coli and yeast. While an ambitious and challenging research endeavour, I've demonstrated that photosystem II remains evolvable and plastic in nature thanks to its structural modularity. Therefore, our approach harnesses this natural adaptability using directed evolution but accelerated to lab timescales.The overarching aim of this fellowship is to demonstrate that photosystem II is amenable to directed evolution, and to begin developing hypermutation and selection approaches to drive its evolution. The ultimate objective of this extension is to deliver proof-of-concept novel photosystems, or strains of cyanobacteria harbouring these novel photosystems, that could pave the wave towards scaling up and translating this vision into viable green biotechnologies.
光系统是光合作用的复杂分子组合,它们产生的能量几乎维持了整个生物圈,每年直接为全球固定约100亿吨二氧化碳提供动力。光合作用利用两个串联工作的光系统:光系统II和光系统I。光系统II收集光,为水氧化和分解成质子、电子和我们呼吸的氧气提供动力。光系统I收集光以产生驱动代谢反应所需的能量,重要的是,但不是唯一的,二氧化碳固定。这些特性使光系统成为生命史上最强大的酶之一,两者都能够利用光来驱动它们自己的复杂化学反应。我的长期愿景是使用基于进化的方法来完全重新设计光系统,这样我们就可以利用它们的特性来进行有用的化学反应,而不仅仅是它们自然进化的功能。我想开发一个技术平台,能够精确控制两个光系统,以实现定制的多步光驱动氧化或还原生物催化。最终,我设想这个平台连接到一个研究设施,允许快速和高通量的纯化,表征和生产这些新的光系统,用于广泛的应用,从生物修复到精密化学,所有这些都由光驱动。因此,这项技术可以通过创造新的方法来进行清洁的化学反应,从而使生物技术和化学工业受益并产生影响。在此扩展中,我继续了在奖学金第一阶段开始的工作。我的实验室目前正在开发,优化和表征定向进化方法,这些方法针对光系统II,以改变其功能特性,超越其自然进化的功能。定向进化是一种非常通用的方法,用于通过利用进化来改变给定酶的特性或活性。它可以简单地通过在有利于所需性状的条件下对生物体进行重复的选择循环来完成,或者通过筛选所需的功能来完成,它可以通过加速突变率(超突变)来增强,它可以集中在单个感兴趣的基因,基因的部分或多个基因上。超突变可以在体外进行,其中基因在试管中突变;或者在体内,当细胞分裂和复制时发生超突变。我的实验室有一个体外系统,我们已经用来分离几种含有一系列突变的光系统II变体,并即将部署基于CRISPR的体内超突变系统。应用定向进化来设计新型光系统的想法是没有先例的。虽然定向进化是一种成熟的技术,但它还没有广泛应用于复杂的酶系统,如光系统,如果有的话。此外,定向进化方法在光合生物中的发展也滞后于非光合系统,如大肠杆菌。大肠杆菌和酵母菌。虽然这是一项雄心勃勃且具有挑战性的研究工作,但我已经证明,由于其结构模块化,光系统II在自然界中仍然是可进化和可塑的。因此,我们的方法利用这种自然的适应性,使用定向进化,但加速到实验室timescales.The奖学金的首要目标是证明,光系统II是服从定向进化,并开始发展hypermutation和选择的方法,以推动其演变。这一扩展的最终目标是提供概念验证的新型光系统,或携带这些新型光系统的蓝藻菌株,这可以为扩大规模并将这一愿景转化为可行的绿色生物技术铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanai Cardona Londono其他文献
Tanai Cardona Londono的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanai Cardona Londono', 18)}}的其他基金
Directed Evolution of Photosystem Chemistry
光系统化学的定向进化
- 批准号:
MR/T017546/2 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
Fellowship
Directed Evolution of Photosystem Chemistry
光系统化学的定向进化
- 批准号:
MR/T017546/1 - 财政年份:2020
- 资助金额:
$ 75.59万 - 项目类别:
Fellowship
相似国自然基金
基于自适应异构代理的分布式数据驱动进化算法研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
自适应集成代理加速的协同分解进化算法及其神经架构搜索应用
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基因进化导向下失效机械零件低碳激光熔覆形性自适应调控机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向农业无人机自适应路径规划的约束多目标进化算法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向天线设计的分布式在线进化算法研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于自适应预测和在线感知的动态约束多目标进化算法及其应用
- 批准号:62176238
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
面向复杂帕累托前沿的自适应策略与算法研究
- 批准号:62006074
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
面向复杂非线性方程组多根求解的自适应集成进化算法研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
基于自适应差分进化的地震约束条件下的重磁联合反演研究
- 批准号:41904129
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
小样本驱动的自适应多目标粒子群优化算法及材料设计应用
- 批准号:61976046
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Doctoral Dissertation Research: The Evolution of Locomotor Specializations in the Context of Adaptive Plasticity
博士论文研究:自适应可塑性背景下运动专业化的演变
- 批准号:
2341351 - 财政年份:2024
- 资助金额:
$ 75.59万 - 项目类别:
Standard Grant
Collaborative Research: Hidden Dimensions of Diversity in Woodland Salamanders: Investigating Ecophysiological Evolution in a Classic Non-Adaptive Radiation
合作研究:林地蝾螈多样性的隐藏维度:研究经典非适应性辐射中的生态生理进化
- 批准号:
2403865 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
Continuing Grant
Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
- 批准号:
2320104 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
Standard Grant
Adaptive evolution of sea stars in the hadal zone
超深渊带海星的适应性演化
- 批准号:
23KJ0746 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Single-cell Proteogenomic profiling of HIV-1 reservoir cells
HIV-1 储存细胞的单细胞蛋白质组学分析
- 批准号:
10675812 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
CAREER: How do mixotroph phenotypic plasticity and adaptive evolution constrain climate feedbacks?
职业:混合营养表型可塑性和适应性进化如何限制气候反馈?
- 批准号:
2237017 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
Continuing Grant
Unraveling the adaptive evolution of gut microbes through a novel metabolic pathway of a saccharide composing of host derived-mucin glycan
通过由宿主衍生的粘蛋白聚糖组成的糖类的新代谢途径揭示肠道微生物的适应性进化
- 批准号:
23KJ1259 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Fractionated photoimmunotherapy to harness low-dose immunostimulation in ovarian cancer
分段光免疫疗法利用低剂量免疫刺激治疗卵巢癌
- 批准号:
10662778 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
Intravitreal gene therapy for inherited retinal disease
遗传性视网膜疾病的玻璃体内基因治疗
- 批准号:
10660784 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
Effects of changes in the soil environment associated with urbanization on plant distribution and adaptive evolution
城市化土壤环境变化对植物分布和适应性进化的影响
- 批准号:
23K05272 - 财政年份:2023
- 资助金额:
$ 75.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)