Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)

用于大气化学和空间研究的太赫兹频率传感器(更新)

基本信息

  • 批准号:
    MR/Y011775/1
  • 负责人:
  • 金额:
    $ 75.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

When we look into space with existing infrared, radio and microwave sensors, we see less than half the light in our galaxy. Most of this "missing" light lies in the terahertz (THz) or far-infrared part of the spectrum (1-10 THz, 30-300 micron wavelength). Indeed, the "invisible" gases in the Earth's atmosphere and the "dark" dust and gas clouds between stars all glow with distinctive THz fingerprints, providing a wealth of hidden information urgently needed by atmospheric and space scientists.Despite this great potential, existing THz sensor systems are too large, fragile and complex for most applications outside the laboratory and lack the sensitivity needed for studying reactive gases. Furthermore, this lack of technological readiness limits the prospects for THz systems being deployed in space. A short time-window is available for the UK to invest in real-world demonstrations of key THz components and sensing techniques and secure a place in forthcoming space missions, for example, via the ESA Earth Explorer 12 (or 13) programmes. Without this, the potential for a UK researcher to lead the world in this emerging area will be lost.In this fellowship, I am overcoming limitations of THz gas sensors by developing high-sensitivity systems based on quantum-cascade lasers (QCLs) - highly compact sources of THz radiation, which yield >1000 times the power of any similar-sized device. I have developed new project partnerships to exploit extremely fast and stable TeraFET detectors, enabling tiny changes in gas concentrations to be measured in real time. Unlike previous THz-QCL-based gas-sensing schemes, I am developing high-precision analytical chemistry techniques, and have developed the first custom-made multi-pass gas cell in which THz radiation passes repeatedly through the gas under study, yielding an estimated 100x improvement in sensitivity.In this Renewal phase of the fellowship, I will adapt my internationally-leading THz gas sensing instrumentation to use an ultraviolet (UV) laser to simulate the behaviour of gases in the upper atmosphere, and "trigger" chemical reactions at a precise time. This will allow me to study the behaviour of volatile organic compounds (VOCs) such as formaldehyde as they react in the atmosphere, and resolve the huge uncertainties in the effect of these reactions on climate change. By developing fast detection schemes, I will provide the means to study the concentrations of industrial and agricultural pollutants in real time, and I will investigate the potential for UV-pump/THz-probe "step-scan" detection technique to probe the dynamics of upper-atmospheric reactions on microsecond timescales.Through my partnership with RAL Space, I have demonstrated the world's first integration of THz QCLs with precision-micromachined waveguides, antennas, and "on-chip" stabilisation subsystems. This Renewal phase will provide a further step-change in capability, by developing the first satellite-compatible THz laser stabilisation schemes, through the use of integrated power and frequency control systems, within "sugarcube"-sized satellite-compatible modules. I will work with RAL Space, and TK Instruments to demonstrate this capability within a space-qualified cryocooler, including bespoke THz optics and calibration targets, on a satellite-test "breadboard", underpinning its future deployment on a satellite platform.To sustain my research vision, and establish THz sensing as a key tool for atmospheric and space research, I will work closely with my project partners to secure follow-on funding for THz chemistry, Earth observation and critical satellite payload instrumentation. I will produce a roadmap for in-orbit deployment, and commercialisation, including developing the science and technology case for a European Space Agency satellite mission through the Earth Explorer programme.
当我们用现有的红外线、无线电和微波传感器观察太空时,我们看到的光不到银河系的一半。这种“丢失”的光大部分位于太赫兹(THz)或光谱的远红外部分(1-10 THz,30-300微米波长)。事实上,地球大气层中“看不见”的气体以及恒星之间“黑暗”的尘埃和气体云都发出独特的太赫兹指纹,提供了大气和空间科学家迫切需要的大量隐藏信息。尽管有着巨大的潜力,但现有的太赫兹传感器系统对于实验室以外的大多数应用来说过于庞大、脆弱和复杂,并且缺乏研究反应气体所需的灵敏度。此外,这种技术准备的缺乏限制了太赫兹系统在太空中部署的前景。英国可以在很短的时间内投资于关键THz组件和传感技术的真实演示,并在即将到来的太空任务中获得一席之地,例如通过欧空局地球探索者12(或13)计划。在这个奖学金项目中,我将通过开发基于量子级联激光器(QCL)的高灵敏度系统来克服太赫兹气体传感器的局限性。量子级联激光器是一种高度紧凑的太赫兹辐射源,其功率是任何类似尺寸设备的1000倍以上。我已经建立了新的项目合作伙伴关系,以利用极快且稳定的TeraFET探测器,从而能够真实的实时测量气体浓度的微小变化。与以前的基于太赫兹量子化学的气体传感方案不同,我正在开发高精度的分析化学技术,并开发了第一个定制的多通道气室,其中太赫兹辐射反复穿过所研究的气体,估计灵敏度提高了100倍。我将调整我的国际领先的太赫兹气体传感仪器,使用紫外线(UV)激光来模拟高层大气中气体的行为,并在精确的时间“触发”化学反应。这将使我能够研究甲醛等挥发性有机化合物(VOC)在大气中反应的行为,并解决这些反应对气候变化影响的巨大不确定性。通过开发快速检测方案,我将提供真实的时间内研究工业和农业污染物浓度的方法,我将研究紫外泵浦/太赫兹探测“步进扫描”检测技术的潜力,以探测微秒时间尺度上高层大气反应的动力学。通过与RAL Space的合作,我已经展示了世界上第一个将太赫兹QCL与精密微机械波导集成在一起,天线和“片上”稳定子系统。这一更新阶段将通过在“方糖”大小的卫星兼容模块内使用集成功率和频率控制系统,开发第一个卫星兼容的太赫兹激光稳定方案,从而进一步改变能力。我将与RAL Space和TK Instruments合作,在卫星测试“试验板”上,在符合空间要求的制冷机中展示这种能力,包括定制的THz光学器件和校准目标,为未来在卫星平台上的部署奠定基础。为了维持我的研究愿景,并将THz传感作为大气和空间研究的关键工具,我将与我的项目合作伙伴密切合作,以确保THz化学,地球观测和关键卫星有效载荷仪器的后续资金。我将为在轨部署和商业化制定路线图,包括通过地球探索者计划为欧洲航天局卫星使命开发科学和技术案例。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Valavanis其他文献

Process and material constraints of additive manufacturing for fabrication of terahertz quasi-optical components
太赫兹准光学元件制造的增材制造工艺和材料限制
  • DOI:
    10.1016/j.apmt.2025.102619
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Luke Phillips;Alexander Valavanis;Andrew D. Burnett;Robert Kay;Russell Harris;Ehab Saleh
  • 通讯作者:
    Ehab Saleh

Alexander Valavanis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Valavanis', 18)}}的其他基金

Terahertz-frequency sensors for atmospheric chemistry and space research
用于大气化学和空间研究的太赫兹频率传感器
  • 批准号:
    MR/S016929/1
  • 财政年份:
    2019
  • 资助金额:
    $ 75.42万
  • 项目类别:
    Fellowship

相似国自然基金

转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于高频信息下高维波动率矩阵估计及应用
  • 批准号:
    71901118
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
粗糙脉孢菌生物钟基因frq转录抑制因子的筛选及其作用机制研究
  • 批准号:
    31330004
  • 批准年份:
    2013
  • 资助金额:
    289.0 万元
  • 项目类别:
    重点项目
新型非对称频分双工系统及其射频关键技术研究
  • 批准号:
    61102055
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
全固态钠黄光激光器波长调控与锁定技术研究
  • 批准号:
    60508013
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sensors for Low-Frequency Improvements in Advanced LIGO
用于先进 LIGO 低频改进的传感器
  • 批准号:
    2309225
  • 财政年份:
    2023
  • 资助金额:
    $ 75.42万
  • 项目类别:
    Standard Grant
Non-invasive measurements of central blood pressures by RF sensors
通过射频传感器无创测量中心血压
  • 批准号:
    10649077
  • 财政年份:
    2023
  • 资助金额:
    $ 75.42万
  • 项目类别:
Nonlinear bio nano-sensors via light frequency conversion
通过光频率转换的非线性生物纳米传感器
  • 批准号:
    2747663
  • 财政年份:
    2022
  • 资助金额:
    $ 75.42万
  • 项目类别:
    Studentship
ID-Cap System: Next generation ingestible sensors for medication adherence measurement
ID-Cap 系统:用于药物依从性测量的下一代可摄入传感器
  • 批准号:
    10475453
  • 财政年份:
    2022
  • 资助金额:
    $ 75.42万
  • 项目类别:
Acousto-optical RF field sensors for safer diagnostic and interventional MRI
用于更安全的诊断和介入 MRI 的声光射频场传感器
  • 批准号:
    10526413
  • 财政年份:
    2020
  • 资助金额:
    $ 75.42万
  • 项目类别:
Acousto-optical RF field sensors for safer diagnostic and interventional MRI
用于更安全的诊断和介入 MRI 的声光射频场传感器
  • 批准号:
    10300995
  • 财政年份:
    2020
  • 资助金额:
    $ 75.42万
  • 项目类别:
Acousto-optical RF field sensors for safer diagnostic and interventional MRI
用于更安全的诊断和介入 MRI 的声光射频场传感器
  • 批准号:
    9917421
  • 财政年份:
    2020
  • 资助金额:
    $ 75.42万
  • 项目类别:
MRI-Controllable Microscale Electronics for Minimally-Invasive Wireless Bio-Sensors and Bio-Actuators
用于微创无线生物传感器和生物执行器的 MRI 可控微型电子器件
  • 批准号:
    10043403
  • 财政年份:
    2020
  • 资助金额:
    $ 75.42万
  • 项目类别:
Acousto-optical RF field sensors for safer diagnostic and interventional MRI
用于更安全的诊断和介入 MRI 的声光射频场传感器
  • 批准号:
    10093044
  • 财政年份:
    2020
  • 资助金额:
    $ 75.42万
  • 项目类别:
Sensors for Low-Frequency Improvements in Advanced LIGO
用于先进 LIGO 低频改进的传感器
  • 批准号:
    1912380
  • 财政年份:
    2019
  • 资助金额:
    $ 75.42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了