ENZYMATIC DETERMINANTS OF ERYTHROMYCIN STEREOCHEMISTRY
红霉素立体化学的酶决定因素
基本信息
- 批准号:6091814
- 负责人:
- 金额:$ 3.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-05-01 至 2001-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (adapted from applicant's abstract): The proposed research focuses
on the biosynthesis of the clinically important antibiotic erythromycin. It is
the long-term goal of this project to produce novel erythromycin derivatives
that cannot be prepared by traditional chemical syntheses. New antibiotic
derivatives such as these are urgently needed, particularly in light of the
increased threat posed by newly emergent antibiotic resistant bacteria.
In specific, this work seeks to determine the enzymatic domains that dictate
the stereochemistry of the erythromycin macrolactone ring and then use this
knowledge to genetically engineer the antibiotic producing bacteria,
Saccharopolyspora erythraea, to produce new erythromycin derivatives.
Currently, the genes for the erythromycin synthase have been cloned, and much
is known about the biosynthesis of this chemically complex antibiotic. Yet, the
enzymatic domains responsible for the stereochemical configuration of ten
distinct sites in the erythromycin macrolactone ring are unknown. Since it has
already been shown that the erythromycin synthase can be altered to produce new
erythromycin derivatives through genetic engineering, knowledge of the
determinants of erythromycin stereochemistry should enable the production of
entirely new series of antibiotic derivatives, many of which may be
biologically active. Indeed, just through alterations in stereochemistry, over
a hundred new erythromycins are theoretically accessible.
The approach to be taken here centers initially on the in vitro construction of
genetic chimeras encoding altered erythromycin synthases using standard
recombinant DNA techniques. These altered synthases will feature enzymatic
domain interchanges focusing on those domains most likely involved in the
determination of erythromycin stereochemistry (i.e. a domain thought to produce
one stereochemical outcome will be replaced with an analogous domain thought to
produce the opposite stereochemical outcome). Once the genetic chimeras have
been constructed in vitro, the wild type genes of the natural
erythromycin-producing organism will be replaced (via a two step gene
replacement protocol) and the erythromycin derivatives produced by the mutant
organisms will be isolated and characterized by NMR. Importantly, most of the
work proposed here will be conducted by undergraduate chemistry and biology
majors, consequently this research project will also provide an ideal training
opportunity for students interested in medical biotechnology and genetic
engineering.
描述(改编自申请人摘要):拟议的研究重点
临床上重要的抗生素红霉素的生物合成。是
该项目的长期目标是生产新型红霉素衍生物,
这是传统的化学合成方法所不能达到的。新的抗生素
像这样的衍生品是迫切需要的,特别是鉴于
新出现的抗生素耐药性细菌带来的威胁增加。
具体而言,这项工作旨在确定决定酶结构域,
红霉素大环内酯环的立体化学,
基因工程抗生素生产细菌的知识,
以生产新的红霉素衍生物。
目前,红霉素合酶的基因已经被克隆,
关于这种化学复杂抗生素的生物合成是已知的。然而
酶结构域负责十个立体化学构型
红霉素大环内酯环中的不同位点是未知的。因为它有
已经表明,红霉素合酶可以被改变以产生新的
红霉素衍生物通过基因工程,知识,
红霉素立体化学的决定因素应该能够产生
一系列全新的抗生素衍生物,其中许多可能是
生物活性。事实上,仅仅通过立体化学的改变,
理论上可以获得一百种新的红霉素。
这里要采取的方法最初集中在体外构建
使用标准的编码改变的红霉素酶的遗传嵌合体
重组DNA技术。这些改变的酶将以酶促
领域交流,重点是那些最有可能涉及的领域,
红霉素立体化学的测定(即被认为产生红霉素的结构域
一个立体化学产物将被类似的结构域所取代,
产生相反的立体化学结果)。一旦基因嵌合体
在体外构建的,野生型基因的自然
产生红霉素的微生物将被替换(通过两步基因
替换方案)和由突变体产生的红霉素衍生物
将通过NMR分离和表征生物体。重要的是,大多数
这里提出的工作将由本科生化学和生物进行
因此,本研究项目也将提供一个理想的培训
对医学生物技术和遗传学感兴趣的学生的机会
工程.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD G SUMMERS其他文献
RICHARD G SUMMERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD G SUMMERS', 18)}}的其他基金
ENZYMATIC DETERMINANTS OF ERYTHROMYCIN STEREOCHEMISTRY
红霉素立体化学的酶决定因素
- 批准号:
6588377 - 财政年份:2001
- 资助金额:
$ 3.94万 - 项目类别:
GENETICS AND BIOCHEMISTRY OF TETRACENOMYCIN C SYNTHESIS
十四霉素 C 合成的遗传学和生物化学
- 批准号:
3045094 - 财政年份:1991
- 资助金额:
$ 3.94万 - 项目类别:
GENETICS AND BIOCHEMISTRY OF TETRACENOMYCIN C SYNTHESIS
十四霉素 C 合成的遗传学和生物化学
- 批准号:
3045093 - 财政年份:1990
- 资助金额:
$ 3.94万 - 项目类别:
相似海外基金
CAREER: Using Microbial Bioproduction Platform to Elucidate Phytochemical Biosynthesis - Strigolactone as An Example
职业:利用微生物生物生产平台阐明植物化学生物合成——以独脚金内酯为例
- 批准号:
2420331 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Continuing Grant
Decoding functional glycan biosynthesis
解码功能性聚糖生物合成
- 批准号:
BB/Y000102/1 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Research Grant
Investigating biosynthesis of the newly discovered natural product euglenatide and distribution across the breadth of Euglenoid algae
研究新发现的天然产物眼虫肽的生物合成及其在眼虫类藻类中的分布
- 批准号:
EP/Y003314/1 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Research Grant
Discovery and reconstitution of securinine alkaloid biosynthesis
叶秋碱生物碱生物合成的发现和重建
- 批准号:
BB/Y003586/1 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Research Grant
Cross talk between DNA replication and LPS biosynthesis during cell growth
细胞生长过程中 DNA 复制和 LPS 生物合成之间的串扰
- 批准号:
BB/Y001265/1 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Research Grant
RUI: BIOPOLYMER - BIObricks POLYketide Metabolic EngineeRing platform for unraveling the biosynthesis of higher anthracyclines
RUI:BIOPOLYMER - BIObricks 聚酮化合物代谢工程平台,用于揭示高级蒽环类药物的生物合成
- 批准号:
2321976 - 财政年份:2024
- 资助金额:
$ 3.94万 - 项目类别:
Standard Grant
Molecular mechanisms of Pel biosynthesis
Pel生物合成的分子机制
- 批准号:
489549 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:
Operating Grants
The role of cholesterol biosynthesis in CAF for tumorigenesis
CAF 中胆固醇生物合成对肿瘤发生的作用
- 批准号:
23K14585 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:
Studentship
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:














{{item.name}}会员




