A high-throughput-compatible animal-cell-free miniaturised thymic organoid model for thymus biology studies and in vitro T cell production.
一种高通量兼容的无动物细胞小型胸腺类器官模型,用于胸腺生物学研究和体外 T 细胞生产。
基本信息
- 批准号:NC/X002470/1
- 负责人:
- 金额:$ 25.52万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
T cells, a type of white blood cell, are an essential component of our immune system. They coordinate and effect our immune responses so we can control infections. Controlling different infections requires different types of immune response and our T cells allow us to make specific immune responses to specific infections. Recently, the power of T cells has been harnessed in medicine to make a new type of therapy called immunotherapy. Immunotherapies are still in their infancy, but have already been used successfully to treat some blood cancers.Within the body, T cells can only be made in a highly specialised organ, the thymus. The thymus instructs precursor cells in the blood to become T cells, then guides the developing T cells through a series of screening processes that ensure that only safe, functional T cells leave the thymus to become part of the immune system. These processes are needed because each T cell has on its surface a protein called T cell receptor (TCR). The TCR recognises and binds a small part of a specific protein (called a peptide) on the surface of other, non-T, cells. When T cells are developing, a very large number of different TCRs are made, that each recognise a peptide from a different protein. Each T cell has a different TCR. Some of the TCRs that are made can bind peptides from proteins from infectious agents such as viruses. Other TCRs can bind peptides from proteins in our own bodies. If these 'self-reactive' TCRs became part of our immune systems they would cause autoimmunity and to avoid this, they are screened out in the thymus. This screening is performed by special cells in the thymus called thymic epithelial cells, which can selectively remove or disarm 'self-reactive' T cells. The thymus is one of the first organs to degenerate in healthy individuals, and this contributes to a general decline in immune system function with age. This is one of the major reasons that as we get older we become more susceptible to new infections, such as flu and covid19. Thymus degeneration also causes problems for adult patients requiring a bone marrow transplant (BMT). This is because, after transplant, some patients take several years to make enough T cells again and these individuals remain vulnerable to infections until their immune system has been properly rebuilt. If their thymus function could be boosted, this time would be shortened.All of this together means there is a lot of interest in making T cells in the lab (eg. for immunotherapy) and in developing methods for boosting thymus function in patients (including BMT patients and the elderly), to increase their ability to fight new infections. However, at present, the only experimental models that mimic thymus function sufficiently well for these purposes rely on the use of cells obtained from the native thymus. Thymus tissue is scarce and hard to work with, which severely limits the numbers and size of studies that can currently be performed - for instance high throughput screening for new drugs relevant to thymus regeneration is not currently possible. We have recently shown that thymic epithelial cells can be made in the lab, starting from stem cells. We have also shown that we can grow miniaturized thymus organs (MTOs), in the lab, starting from native thymus tissue. We make these MTOs in a format that is suitable for low, medium and high throughput studies including drug screening and lab based T cell production. However, their use is still limited by tissue supply. This project will test whether we can combine these two approaches to make fully animal-cell-free MTOs from stem cells. If successful, this new animal-cell-free model system will significantly reduce the number of animals used in research. It will also enable a new era of thymus research in which much larger scale experiments can easily be performed, opening up this area to a wide range of laboratories including the pharmaceutical industry.
T细胞是一种白色血细胞,是我们免疫系统的重要组成部分。它们协调并影响我们的免疫反应,因此我们可以控制感染。控制不同的感染需要不同类型的免疫反应,我们的T细胞使我们能够对特定的感染做出特定的免疫反应。最近,T细胞的力量已被利用在医学上,使一种新型的疗法称为免疫疗法。免疫疗法仍处于起步阶段,但已经成功地用于治疗某些血癌。在体内,T细胞只能在一个高度专门化的器官-胸腺中产生。胸腺指导血液中的前体细胞成为T细胞,然后引导发育中的T细胞通过一系列筛选过程,确保只有安全,功能性的T细胞离开胸腺成为免疫系统的一部分。这些过程是必要的,因为每个T细胞表面都有一种称为T细胞受体(TCR)的蛋白质。TCR识别并结合其他非T细胞表面的一小部分特定蛋白质(称为肽)。当T细胞发育时,会产生大量不同的TCR,每个TCR都识别来自不同蛋白质的肽。每个T细胞都有不同的TCR。一些TCR可以结合来自病毒等感染因子的蛋白质的肽。其他TCR可以结合我们体内蛋白质的肽。如果这些“自身反应性”TCR成为我们免疫系统的一部分,它们将导致自身免疫,为了避免这种情况,它们在胸腺中被筛选出来。这种筛选是由胸腺中称为胸腺上皮细胞的特殊细胞进行的,它可以选择性地清除或解除“自我反应”T细胞。胸腺是健康个体中最先退化的器官之一,这导致免疫系统功能随年龄增长而普遍下降。这是随着年龄的增长,我们变得更容易受到新感染的主要原因之一,如流感和covid 19。胸腺变性也会给需要骨髓移植(BMT)的成年患者带来问题。这是因为,在移植后,一些患者需要几年时间才能再次产生足够的T细胞,这些人仍然容易受到感染,直到他们的免疫系统得到适当的重建。如果他们的胸腺功能可以得到增强,这一时间将缩短。所有这些都意味着在实验室中制造T细胞有很大的兴趣。用于免疫治疗)和开发增强患者(包括BMT患者和老年人)胸腺功能的方法,以提高他们对抗新感染的能力。然而,目前,唯一的实验模型,模拟胸腺功能足够好,这些目的依赖于使用从天然胸腺获得的细胞。胸腺组织稀少且难以处理,这严重限制了目前可以进行的研究的数量和规模-例如,目前不可能对与胸腺再生相关的新药进行高通量筛选。我们最近已经证明,胸腺上皮细胞可以在实验室中制造,从干细胞开始。我们还表明,我们可以在实验室中从天然胸腺组织开始培养小型胸腺器官(MTO)。我们以适合于低、中和高通量研究的形式制造这些MTO,包括药物筛选和基于实验室的T细胞生产。然而,它们的使用仍然受到组织供应的限制。这个项目将测试我们是否可以将这两种方法联合收割机从干细胞中制造完全不含动物细胞的MTO。如果成功,这种新的无动物细胞模型系统将大大减少研究中使用的动物数量。这也将使胸腺研究的新时代,其中更大规模的实验可以很容易地进行,开放这一领域的广泛实验室,包括制药行业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clare Blackburn其他文献
Prevalence and social patterning of limiting long-term illness/disability in children and young people under the age of 20 years in 2001: UK census-based cross-sectional study.
2001 年 20 岁以下儿童和青少年中限制长期疾病/残疾的患病率和社会模式:英国基于人口普查的横断面研究。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
N. Spencer;Clare Blackburn;Janet Read - 通讯作者:
Janet Read
Clare Blackburn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clare Blackburn', 18)}}的其他基金
Steroid receptors and transcriptional control of thymic rebound
类固醇受体和胸腺反弹的转录控制
- 批准号:
BB/H021183/1 - 财政年份:2010
- 资助金额:
$ 25.52万 - 项目类别:
Research Grant
Childhood limiting long-term illness/disabilty and socioeconomic disadvantage in the UK: exploring predictors, trends and causal directions
童年限制了英国的长期疾病/残疾和社会经济劣势:探索预测因素、趋势和因果方向
- 批准号:
ES/I007954/1 - 财政年份:2010
- 资助金额:
$ 25.52万 - 项目类别:
Research Grant
相似海外基金
Identification of Small Molecules for Reactivation of p53 Cancer Mutants
鉴定用于 p53 癌症突变体再激活的小分子
- 批准号:
7617518 - 财政年份:2008
- 资助金额:
$ 25.52万 - 项目类别:
High Throughput Screening of Peptide Pharmaceuticals
多肽药物的高通量筛选
- 批准号:
7325917 - 财政年份:2007
- 资助金额:
$ 25.52万 - 项目类别:
Functionally Validated Lentiviral siRNA Libraries
功能验证的慢病毒 siRNA 文库
- 批准号:
7275220 - 财政年份:2007
- 资助金额:
$ 25.52万 - 项目类别:
Automated Screening System for Modifiers of Cardiac Output in Zebrafish
斑马鱼心输出量调节因素的自动筛选系统
- 批准号:
7286677 - 财政年份:2006
- 资助金额:
$ 25.52万 - 项目类别:
Microfluidic Bioreactor for High Throughput Hepatotoxicity Screening
用于高通量肝毒性筛选的微流控生物反应器
- 批准号:
7482512 - 财政年份:2006
- 资助金额:
$ 25.52万 - 项目类别:
A screen for small molecule inhibitors of soluble Abeta oligomer assembly
可溶性 Abeta 寡聚物组装的小分子抑制剂的筛选
- 批准号:
7273895 - 财政年份:2006
- 资助金额:
$ 25.52万 - 项目类别:
Microarray Assay for Detection of Lab Animal Pathogens
用于检测实验动物病原体的微阵列分析
- 批准号:
7251889 - 财政年份:2004
- 资助金额:
$ 25.52万 - 项目类别:














{{item.name}}会员




