Global Imaging of the Lithosphere-Asthenosphere Boundary using Scattered Waves
使用散射波对岩石圈-软流圈边界进行全球成像
基本信息
- 批准号:NE/G013438/1
- 负责人:
- 金额:$ 29.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The surface of our planet is composed of a number of tectonic plates, resembling an eggshell that has been cracked, but not opened. These plates are called the lithosphere. The lithosphere moves over a weak layer that is called the asthenosphere. This movement is referred to as plate tectonics. The lithosphere is constantly being destroyed, where one plate is dragged down, or subducts, beneath another, and enters the asthenosphere. It is also constantly being created, at mid-ocean ridges, where two plates are pulled apart, causing melt to rise into the void, and cool to form new crust. The earth is made of many layers, and the locations of the layers as well as the cause for the layering (e.g. changes in rock type or state) are relatively well known. However, the lithosphere-asthenosphere boundary is not globally located, nor is the mechanism that defines it well known. The interface between the lithosphere and the asthenosphere is a very important boundary in that the nature of the boundary has implications for the driving forces of plate tectonics and the origin and evolution of the continents on which we live. Plate tectonics is what drives natural disasters like earthquakes, volcanic eruptions, and tsunamis. Continent formation is puzzling since it is no longer occurring, and most continental interiors are billions of years ago. We would like to know how they formed and what enabled their formation, and stability through time, since they make up the area of the earth that is hospitable to humans. To investigate this boundary I use the energy from earthquakes, seismic waves, recorded at distant stations to image boundaries in the earth, since changes in the velocity of the earth affect the path of the waves. Seismologists have collected much seismic data over the past ~20 years at permanent seismic stations located primarily on continents. We also collect data from high density deployments of temporary arrays of seismometers. The data gives us high resolution imaging capabilities, and this allows us to constrain seismic velocity gradients in great detail. Such constraints tell us about the mechanism that defines the lithosphere-asthenosphere boundary. Experiments done on rocks help us determine the effects of various parameters like temperature, composition, and melting have on seismic waves. What they tell us is that gradual velocity gradient can be explained by the transition from a cool lithosphere, to a hotter asthenosphere. However, seismically sharp boundaries require other mechanisms to explain them. Compositional changes, i.e. mineral content and/or hydration, or a small amount of melting in the asthenosphere could be responsible for sharp velocity contrasts. Sharp boundaries mean that the lithosphere and the asthenosphere are very decoupled, and plate motions are driven by the gravitational pull of dense plates where they subduct into the asthenosphere. Gradual boundaries indicate increased coupling, and the notion that motions in the mantle beneath the lithosphere may play a larger role. We plan to look for sharp boundaries associated with the lithosphere-asthenosphere boundary, and investigate variations in the depth and character of the boundary in a variety of tectonic environments. Beneath oceans sharp boundaries are frequently imaged, and they are occasionally imaged beneath continents. It is often assumed that different mechanisms define the boundary beneath continents and oceans. However, it remains a puzzle why such a boundary would be defined in different ways in different locations. We plan to resolve this issue with global modeling of the boundary using high frequency energy that gives us information about the character of the interface. In some cases, we may also image boundaries that are interior to the lithosphere. But these are also interesting since they can tell us about the building blocks that compose the continents, with implications for their formation and evolution.
地球的表面是由许多构造板块组成的,就像一个已经破裂但没有打开的蛋壳。这些板块被称为岩石圈。岩石圈在一个叫做软流圈的薄弱层上运动。这种运动被称为板块构造运动。岩石圈不断地被破坏,其中一个板块被拖下,或俯冲到另一个板块之下,并进入软流圈。它也在不断地被创造出来,在大洋中脊,两个板块被拉开,导致熔体上升到虚空中,冷却形成新的地壳。地球是由许多层组成的,这些层的位置以及分层的原因(例如岩石类型或状态的变化)相对来说是众所周知的。然而,岩石圈-软流圈边界并不是全球性的,也不是众所周知的机制,定义它。岩石圈和软流圈之间的界面是一个非常重要的边界,因为边界的性质对板块构造的驱动力以及我们生活的大陆的起源和演化具有影响。板块构造是导致地震、火山爆发和海啸等自然灾害的原因。大陆的形成是令人困惑的,因为它不再发生,大多数大陆内部是数十亿年前的。我们想知道它们是如何形成的,是什么使它们能够形成,并随着时间的推移保持稳定,因为它们构成了地球上适合人类居住的区域。为了研究这个边界,我使用地震的能量,地震波,在遥远的台站记录到地球的图像边界,因为地球速度的变化会影响波的路径。在过去的20年里,地震学家在主要位于大陆上的常设地震台站收集了大量的地震资料。我们还从临时地震仪阵列的高密度部署中收集数据。这些数据为我们提供了高分辨率的成像能力,这使我们能够非常详细地限制地震速度梯度。这些约束告诉我们关于定义岩石圈-软流圈边界的机制。在岩石上做的实验帮助我们确定温度、成分和熔化等各种参数对地震波的影响。他们告诉我们的是,逐渐的速度梯度可以用从冷的岩石圈到热的软流圈的转变来解释。然而,地震学上的尖锐边界需要其他机制来解释。组成的变化,即矿物质含量和/或水化,或少量的熔化在软流圈可能是负责尖锐的速度对比。尖锐的边界意味着岩石圈和软流圈是非常分离的,板块运动是由致密板块的引力驱动的,在那里它们俯冲到软流圈中。渐变的边界表明耦合作用增强,以及岩石圈下地幔运动可能起更大作用的观点。我们计划寻找与岩石圈-软流圈边界相关的尖锐边界,并调查在各种构造环境中边界的深度和特征的变化。在海洋之下,清晰的边界经常被成像,它们偶尔也被成像在大陆之下。人们通常认为,大陆和海洋的边界是由不同的机制确定的。然而,为什么在不同的地方以不同的方式界定这样的边界仍然是一个谜。我们计划通过使用高频能量对边界进行全局建模来解决这个问题,高频能量为我们提供了有关界面特征的信息。在某些情况下,我们也可以想象岩石圈内部的边界。但这些也很有趣,因为它们可以告诉我们组成大陆的基本组成部分,以及它们的形成和演化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seismic imaging of melt in a displaced Hawaiian plume
- DOI:10.1038/ngeo1878
- 发表时间:2013-08
- 期刊:
- 影响因子:18.3
- 作者:C. Rychert;G. Laske;N. Harmon;P. Shearer
- 通讯作者:C. Rychert;G. Laske;N. Harmon;P. Shearer
Upper mantle temperature and the onset of extension and break-up in Afar, Africa
- DOI:10.1016/j.epsl.2015.02.039
- 发表时间:2015-05-15
- 期刊:
- 影响因子:5.3
- 作者:Armitage, John J.;Ferguson, David J.;Harmon, Nicholas
- 通讯作者:Harmon, Nicholas
Receiver function imaging of lithospheric structure and the onset of melting beneath the Galápagos Archipelago
加拉帕戈斯群岛下方岩石圈结构和融化开始的接收函数成像
- DOI:10.1016/j.epsl.2013.11.027
- 发表时间:2014
- 期刊:
- 影响因子:5.3
- 作者:Rychert C
- 通讯作者:Rychert C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Rychert其他文献
Catherine Rychert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Rychert', 18)}}的其他基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
Collaborative Research: Mantle Dynamics and Plate Tectonics Constrained by Converted and Reflected Seismic Wave Imaging Beneath Hotspots
合作研究:热点下方转换和反射地震波成像约束的地幔动力学和板块构造
- 批准号:
2147918 - 财政年份:2022
- 资助金额:
$ 29.49万 - 项目类别:
Continuing Grant
Passive Imaging of the Lithosphere Asthensphere Boundary (PiLAB)
岩石圈软流圈边界被动成像 (PiLAB)
- 批准号:
NE/M003507/1 - 财政年份:2016
- 资助金额:
$ 29.49万 - 项目类别:
Research Grant
Volatile Recycling at the Lesser Antilles Arc: Processes and Consequences
小安的列斯群岛弧的挥发性回收:过程和后果
- 批准号:
NE/K010654/1 - 财政年份:2015
- 资助金额:
$ 29.49万 - 项目类别:
Research Grant
Global Seismic Imaging of the Oceanic Plates
海洋板块的全球地震成像
- 批准号:
NE/K000985/1 - 财政年份:2013
- 资助金额:
$ 29.49万 - 项目类别:
Research Grant
Global Imaging of the Lithosphere-Asthenosphere Boundary using Scattered Waves
使用散射波对岩石圈-软流圈边界进行全球成像
- 批准号:
NE/G013438/2 - 财政年份:2011
- 资助金额:
$ 29.49万 - 项目类别:
Fellowship
相似国自然基金
非小细胞肺癌Biomarker的Imaging MS研究新方法
- 批准号:30672394
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Deep seismic imaging the evolution of continental lithosphere
深地震成像大陆岩石圈的演化
- 批准号:
RGPIN-2018-04185 - 财政年份:2022
- 资助金额:
$ 29.49万 - 项目类别:
Discovery Grants Program - Individual
Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity
利用地震波衰减和速度成像新方法探测南极西部岩石圈和软流圈
- 批准号:
2201129 - 财政年份:2022
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
Deep seismic imaging the evolution of continental lithosphere
深地震成像大陆岩石圈的演化
- 批准号:
RGPIN-2018-04185 - 财政年份:2021
- 资助金额:
$ 29.49万 - 项目类别:
Discovery Grants Program - Individual
Deep seismic imaging the evolution of continental lithosphere
深地震成像大陆岩石圈的演化
- 批准号:
RGPIN-2018-04185 - 财政年份:2020
- 资助金额:
$ 29.49万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Modification of a Continent: Seismic Tomography and Imaging of the Northern American Lithosphere
职业:大陆的改造:北美岩石圈的地震层析成像和成像
- 批准号:
1942431 - 财政年份:2020
- 资助金额:
$ 29.49万 - 项目类别:
Continuing Grant
Deep seismic imaging the evolution of continental lithosphere
深地震成像大陆岩石圈的演化
- 批准号:
RGPIN-2018-04185 - 财政年份:2019
- 资助金额:
$ 29.49万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Lithosphere-scale anisotropic imaging across the Eastern North American Margin's ocean-continent transition
合作研究:横跨北美东部边缘海洋-大陆过渡的岩石圈尺度各向异性成像
- 批准号:
2001145 - 财政年份:2019
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
Collaborative Research: Lithosphere-scale anisotropic imaging across the Eastern North American Margin's ocean-continent transition
合作研究:横跨北美东部边缘海洋-大陆过渡的岩石圈尺度各向异性成像
- 批准号:
1753722 - 财政年份:2018
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
Collaborative Research: Lithosphere-scale anisotropic imaging across the Eastern North American Margin's ocean-continent transition
合作研究:横跨北美东部边缘海洋-大陆过渡的岩石圈尺度各向异性成像
- 批准号:
1753759 - 财政年份:2018
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant
Deep seismic imaging the evolution of continental lithosphere
深地震成像大陆岩石圈的演化
- 批准号:
RGPIN-2018-04185 - 财政年份:2018
- 资助金额:
$ 29.49万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




